

ADVANCED CONCEPT TRAINING Concrete

All information in this document is subject to modification without prior notice. No part of this manual may be reproduced, stored in a database or retrieval system or published, in any form or in any way, electronically, mechanically, by print, photo print, microfilm or any other means without prior written permission from the publisher. SCIA is not responsible for any direct or indirect damage because of imperfections in the documentation and/or the software.

© Copyright 2021 SCIA nv. All rights reserved.

Table of Contents

Table of Cont	tents		3
Chapitre 1:	Mater	ials	5
1.1.	Verifi	cation by the partial factor method	5
1.2.	Conc	rete	6
1.	2.1.	Strength (art 3.1.2)	6
1.	2.2.	Design compressive and tensile strengths (art 3.1.6)	10
1.	2.3.	Elastic deformation (art 3.1.3)	12
1.	2.4.	Creep and shrinkage (art 3.1.4)	12
1.	2.5.	Stress-strain relations for the design of cross-sections (art 3.1.7)	15
1.3.	Reinf	orcing Steel	16
1.	3.1.	Properties (art 3.2.2)	16
1.	3.2.	Design assumptions (art 3.2.7)	18
1.4.	Durat	pility and cover to reinforcement	19
1.	4.1.	Environmental conditions (art 4.2)	19
1.	4.2.	Methods of verification (art 4.4)	21
Chapitre 2:	Desig	ın and Check	29
2.1.	Analy	vsis models	29
2.	1.1.	Eurocode	29
2.	1.2.	Scia Engineer	29
2.	1.3.	Example	32
2.2.	Beam	ı design	33
2.	2.1.	Description of used example	33
2.	2.2.	Recalculated internal forces	33
2.	2.3.	Theoretical reinforcement	41
2.	2.4.	Practical reinforcement	53
2.	2.5.	Conversion of theoretical reinforcement into practical reinforcement	58
2.	2.6.	Checks	61
2.3.	Colur	nn design	89
2.	3.1.	Reinforcement design methods	89
2.	3.2.	Calculation of internal forces	106
2.4.	Plate	design	120
2.	4.1.	Used example	120
2.	4.2.	Results for the linear calculation	125
2.	4.3.	Concrete setups	132
2	4.4.	ULS design	134
2.4	4.5.	SLS Design of 2D members – Crack width and stress limitation	152

2.4	4.6.	Crack control	157
2.5.	Punch	ning	161
2.	5.1.	Theoretical background	161
2.	5.2.	Punching design	167
2.6.	Code	dependant deflection (CDD)	179
2.0	6.1.	Intro	179
2.0	6.2.	Types of combination for CDD	180
2.0	6.3.	Type of reinforcement	182
2.0	6.4.	Calculation of stiffness for 1D elements	183
2.0	6.5.	Calculation of stiffness for 2D elements	186
2.0	6.6.	Parameters for the calculation of shrinkage strain	189
2.0	6.7.	Calculation of deflection	190
Chapitre 3:	Modifi	cation of results191	
Chapitre 3: 3.1.		cation of results191	191
3.1.	Locati		
3.1. 3.	Locati 1.1.	ion	191
3.1. 3. 3.	Locat i 1.1. 1.2.	i on In nodes, no average	191 191
3.1. 3. 3. 3.	Locati 1.1. 1.2. 1.3.	ion In nodes, no average In centers	191 191 192
3.1. 3. 3. 3. 3.	Locati 1.1. 1.2. 1.3. 1.4.	ion In nodes, no average In centers In nodes, average	191 191 192 192
3.1. 3. 3. 3. 3.	Locati 1.1. 1.2. 1.3. 1.4. 1.5.	ion In nodes, no average In centers In nodes, average In nodes, average on macro	191 191 192 192 193
3.1. 3. 3. 3. 3. 3.	Locati 1.1. 1.2. 1.3. 1.4. 1.5. Avera	ion In nodes, no average In centers In nodes, average In nodes, average on macro Accuracy of the results	191 191 192 192 193 193
3.1. 3. 3. 3. 3. 3. 3.2. 3.3.	Locati 1.1. 1.2. 1.3. 1.4. 1.5. Avera Rib	ion In nodes, no average In centers In nodes, average In nodes, average on macro Accuracy of the results ging strip	191 192 192 193 193 193
3.1. 3. 3. 3. 3. 3.2. 3.3. 3.3.	Locati 1.1. 1.2. 1.3. 1.4. 1.5. Avera Rib 3.1.	ion In nodes, no average In centers In nodes, average In nodes, average on macro Accuracy of the results ging strip	191 191 192 192 193 193 197 197

Chapitre 1: Materials

1.1. Verification by the partial factor method

Cf art 2.4.2.4.

Partial factors for materials for ultimate limit states, γc and γs should be used.

The recommended values of γ_c and γ_s for 'persistent & transient' and 'accidental, design situations are given in the following table. These are not valid for fire design for which reference should be made to EN 1992-1-2.

For fatigue verification the partial factors for persistent design situations given in this table are recommended for the values of $\gamma_{c,fat}$ and $\gamma_{s,fat}$.

Design situations	$\gamma_{\rm C}$ for concrete	$\gamma_{\rm S}$ for reinforcing steel	$\gamma_{\rm S}$ for prestressing steel
Persistent & Transient	1,5	1,15	1,15
Accidental	1,2	1,0	1,0

These values can also be found in the Concrete setup of the National Annex:

Concrete setup			2	×
 Type of values NA Type of function Hollow core 		Standard EN Concrete Seneral Non-prestressed reinforcement Prestressed reinforcement Ourability and concrete cover ULS General Punching SLS Allowable stress SLS stress limitation during tensioning SLS stress limitation Detailing provisions Columns Beams 2D structures and slabs Punching	Name Standard EN 4 Concrete 4 General 4 Concrete 4 National annex 4 EN_1992_1_1 4 EN_1992_1_1 4 TSHFpartial factor for shrinkage actio Value [-] 1.00 4 TC - partial factor for design values o Values [-] 1.50 / 1.20	×
		< >		-
Select all	Unselect all	Refresh	Load default NA parameters OK Cancel	

Concrete setup		×
Prestressing Prestressing Prestressing Prestressing Puch Gener Punch SIS Gener Parestr SIS SI Detailing Comm Column Beams	ete brestressed reinforcement liifty and concrete cover al al essing sirtess limitation during tensioning ters limitation provisions sins utures and slabs	[-] 1.15 / 1.00
Select all Unselect all	Refresh	Load default NA parameters OK Cancel

All factors related to the code are shown in green on the screen. By default, the values of the chosen code are taken.

The values for partial factors for materials for serviceability limit state verification should be taken as those given in the particular clauses of this Eurocode.

The recommended values of γ_c and γ_s in the serviceability limit state for situations not covered by particular clauses of this Eurocode is 1,0.

Lower values of γ_c and γ_s may be used if justified by measures reducing the uncertainty in the calculated resistance.

1.2. Concrete

The following clauses give principles and rules for normal and high strength concrete.

1.2.1. Strength (art 3.1.2)

The compressive strength of concrete is denoted by concrete strength classes which relate to the characteristic (5%) cylinder strength f_{ck} , or the cube strength $f_{ck,cube}$.

The strength classes in this code are based on the characteristic cylinder strength $\rm f_{ck}$ determined at 28 days with a maximum value of $\rm C_{max}.$

The recommended value of C_{max} is C90/105.

In certain situations (e.g. prestressing) it may be appropriate to assess the compressive strength for concrete before or after 28 days, on the basis of test specimens stored under other conditions than prescribed in EN 12390.

All values can also be found in the material library of SCIA Engineer:

It may be required to specify the concrete compressive strength, $f_{ck}(t)$, at time *t* for a number of stages (e.g. demoulding, transfer of prestress), where:

$$\begin{array}{ll} f_{ck}(t) = f_{cm}(t) - 8 \ (MPa) & \mbox{ for } 3 < t < 28 \ \mbox{days} \\ f_{ck}(t) = f_{ck} & \mbox{ for } t \geq 28 \ \mbox{days} \end{array}$$

The compressive strength of concrete at an age *t* depends on the type of cement, temperature and curing conditions. For a mean temperature of 20°C and curing in accordance with EN 12390 the compressive strength of concrete at various ages $f_{cm}(t)$ may be estimated from:

$$f_{cm}(t) = \beta_{cc}(t) f_{cm}$$
(3.1)
with $\beta_{cc}(t) = e^{\left\{s\left[1 - \left(\frac{28}{t}\right)^{\frac{1}{2}}\right]\right\}}$
(3.2)

where:

- $f_{\text{cm}}(t)$ is the mean concrete compressive strength at an age of t days
- ${\rm f}_{\rm cm}$ $\,$ is the mean compressive strength at 28 days according to Table 3.1 $\,$
- $\beta_{cc}(t)\,$ is a coefficient which depends on the age of the concrete t
- t is the age of the concrete in days
- s is a coefficient which depends on the type of cement:
 - = 0,20 for cement of strength Classes CEM 42,5 R, CEM 52,5 N and CEM 52,5 R (Class R)
 - = 0,25 for cement of strength Classes CEM 32,5 R, CEM 42,5 N (Class N)
 - = 0,38 for cement of strength Classes CEM 32,5 N (Class S)

The type of cement can be chosen in the material library:

The tensile strength refers to the highest stress reached under concentric tensile loading.

The characteristic strengths for f_{ck} and the corresponding mechanical characteristics necessary for design, are given in Table 3.1:

				5										
Analytical relation / Explanation			$f_{\rm cm} = f_{\rm ck} + 8({\sf MPa})$	$f_{\text{cur}}=0,30 \times f_c (^{233}) \le C50)60$ $f_{\text{cur}}=2,12 \cdot \ln(1 + (f_{cur}/10))$ > C50/60	$f_{ctr,0.05} = 0.7 \times f_{ctm}$ 5% fractile	<i>f_{ctk:0.56}</i> = 1,3 <i>×f_{ctm}</i> 95% fractile	$E_{\rm cm} = 22[(f_{\rm cm})/10]^{0.3}$ $(f_{\rm cm} \text{ in MPa})$	see Figure 3.2 _{&1} (³)::0,7 f _{cm0,31} < 2.8	See Figure 3.2 for f _{6k} ≥ 50 Mpa _{6-ut} (⁰ /m)=2.8+271(98-f _{cm})/1001 ⁴	see Figure 3.3 for f _{6k} ≥ 50 Mpa _{6∈d} ⁽¹ √ ₀₀)=2,0+0,085(f _{6k} -50) ^{0,53}	see Figure 3.3 for ℓ _{6k} ≥ 50 Mpa ε₀œ(^{ty} ₀ů)=2,6+35[(90-f₀)/100] ⁴	for f _{6i} ≿ 50 Mpa <i>n</i> =1,4+23,4[(90- <i>f</i> ₆)/100] ⁴	see Figure 3.4 for f ₄ ≥ 50 Mpa <i>ε</i> _{e3} (^{0,} ₀₀)=1 ,75+0,55[(f ₆ ,-50)/40]	see Figure 3.4 for <i>f</i> ₄ ≥ 50 Mpa <i>ε</i> _{cut} (?/₀)=2,6+35[(90-f ₄)/100] ⁴
	06	105	<mark>88</mark>	5,0	3,5	6,6	44	2,8	2,8	2,6	2,6	1,4	2,3	2,6
	80	96	8	4,8	3,4	6,3	42	2,8	2,8	2,5	2,6	1,4	2,2	2,6
	70	85	78	4,6	3,2	6,0	41	2,7	2,8	2,4	2,7	1,45	2,0	2,7
	60	75	68	4,4	3,1	5,7	39	2,6	3,0	2,3	2,9	1,6	1,9	2,9
	55	67	63	4,2	3,0	5,5	38	2,5	3,2	2,2	3,1	1,75	1,8	3,1
Strength classes for concrete	50	8	8	4,1	2,9	5,3	37	2,45						
for co	45	55	53	3,8	2,7	4,9	36	2,4						
sses	40	ß	48	3,5	2,5	4,6	35	2,3						
jth cla	35	45	43	3,2	2,2	4,2	8	2,25						
Strenç	30	37	8	2,9	2,0	3,8	33	2,2	3,5	2,0	3,5	2,0	1,75	3,5
	25	8	33	2,6	1,8	3,3	31	2,1						
	20	25	28	2,2	1,5	2,9	30	2,0						
	16	20	24	1,9	1,3	2,5	29	1,9						
	12	15	20	1,6	1,1	2,0	27	1,8						
	$f_{ m ck}$ (MPa)	f _{ck αube} (MPa)	f _m (MPa)	f _{cm} (MPa)	f _{dk, 0.05} (MPa)	f _{ck.0,95} (MPa)	E _{cm} (GPa)	\mathcal{E}_{c1} (%)	Eart (‰)	\mathcal{E}_{c2} (%0)	$\mathcal{E}_{\mathrm{ou2}}$ (%)	и	ε_{c3} (%0)	Eau3 (%o)

Table 3.1 Strength and deformation characteristics for concrete

1.2.2. **Design compressive and tensile strengths (art 3.1.6)**

The value of the design compressive strength is defined as

$$f_{cd} = \alpha_{cc} f_{ck} / \gamma_c$$

where:

 γ_{C} is the partial safety factor for concrete.

 α_{cc} is the coefficient taking account of long term effects on the compressive strength and of unfavourable effects resulting from the way the load is applied.

(3.15)

Chapitre 1: Materials

The value of α_{cc} should lie between 0,8 and 1,0. The recommended value is 1,0. Remark: the Belgian National Annex recommends the use of the value 0,85.

The value of the design tensile strength, $\mathrm{f}_{\text{ctd}},$ is defined as

$$f_{ctd} = \alpha_{ct} f_{ctk,0,05} / \gamma_{C}$$
(3.16)

where:

 γc is the partial safety factor for concrete.

 α_{ct} is a coefficient taking account of long term effects on the tensile strength and of unfavourable effects, resulting from the way the load is applied.

The recommended value of α_{ct} is 1,0.

The values of the coefficients taking account of long term effects can be found in the Concrete setup of the National Annex:

If the concrete strength is determined at an age t > 28 days the values α_{cc} and α_{ct} should be reduced by a factor k_t .

The recommended value of kt is 0,85.

1.2.3. Elastic deformation (art 3.1.3)

The elastic deformations of concrete largely depend on its composition (especially the aggregates). The values given in this Standard should be regarded as indicative for general applications. However, they should be specifically assessed if the structure is likely to be sensitive to deviations from these general values.

The modulus of elasticity of a concrete is controlled by the moduli of elasticity of its components. Approximate values for the modulus of elasticity E_{cm} , secant value between $\sigma_c = 0$ and $0.4f_{cm}$, for concretes with quartzite aggregates, are given in Table 3.1.

For limestone and sandstone aggregates the value should be reduced by 10% and 30% respectively. For basalt aggregates the value should be increased by 20%.

Variation of the modulus of elasticity with time can be estimated by:

$$E_{cm}(t) = (f_{cm}(t) / f_{cm})^{0,3} E_{cm}$$
(3.5)

where $E_{cm}(t)$ and $f_{cm}(t)$ are the values at an age of *t* days and E_{cm} and f_{cm} are the values determined at an age of 28 days. The relation between $f_{cm}(t)$ and f_{cm} follows from Expression (3.1).

Poisson's ratio may be taken equal to 0,2 for uncracked concrete and 0 for cracked concrete.

1.2.4. Creep and shrinkage (art 3.1.4)

Creep and shrinkage of the concrete depend on the ambient humidity, the dimensions of the element and the composition of the concrete. Creep is also influenced by the maturity of the concrete when the load is first applied and depends on the duration and magnitude of the loading.

The value of the creep coefficient can be set in the concrete settings by using the "Code-based settings" view or in the 1D member data if it is defined. If the type input of the creep coefficient is "**Auto**", the creep coefficient can be calculated automatically by inputting the age of concrete and the relative humidity (see annex B.1. in EN 1992-1-1).

If the type input of the creep coefficient is "User value", the creep coefficient can be inputted directly by the user.

ws:	Code-based settings View settings Load defa	ault F	Find					Nationa	l annex: 🏼 🏹
D	escription	Symbol	Value	Default	Unit	Chapter	Code	Structu	CheckT
<all></all>	Q	<all> 🔎</all>	<all></all>	<all> 🔎</all>	<,D	<all> \wp</all>	EN 1992-1 $ imes$	<all> 🔎</all>	Solver : X
a 3.	Materials								
	3.1 Concrete								
	 3.1.4 Creep and shrinkage 								
	Age of concrete at the moment considered	t	18250.00	18250.00	day	3.1.4.B.1-2	EN 1992-1-1	All (Bea	Solver se
	Relative humidity	RH	50	50	%	3.1.4.B.1-2	EN 1992-1-1	All (Bea	Solver se
	Type input of creep coefficient	Type q (t,to)	Auto	Auto		3.1.4(2)	EN 1992-1-1	All (Bea	Solver se
	Age of concrete at loading	t ₀	28.00	28.00	day	3.1.4(2),B1	EN 1992-1-1	All (Bea	Solver se
	Consider drying and autogenous shrinkage	Type s _{os} (t,ts)	Auto	Auto		3.1.4(6)	EN 1992-1-1	All (Bea	Solver se
	Age of concrete at the beginning of drying shrinkage	t₅	7.00	7.00	day	3.1.4(6),B2	EN 1992-1-1	All (Bea	Solver se
₄ 5.	Structural analysis								
⊳	5.2 Geometric imperfections								
	5.3 Idealisation of the structure								
	∡ 5.3.2 Geometric data								
	Moment reduction above supports					5.3.2.2 (4)	EN 1992-1-1	Beam,B	Solver se
⊳	5.8 Analysis of second order effects with axial load								
4 6.	Ultimate limit states (ULS)								
Þ	6.1 Bending with or without axial force								
	6.2 Shear								
	4 6.2.1 General verification procedure								

The creep coefficient φ(t,t₀) may be calculated from:

 $\varphi(t,t_0) = \varphi_0 \cdot \beta_c(t,t_0) \tag{B.1}$

where:

 $\varphi_0 = \varphi_{RH} \cdot \beta(f_{cm}) \cdot \beta(t_0) \qquad (B.2)$

φ_{RH} is a factor to allow for the effect of relative humidity on the notional creep coefficient:

$$\varphi_{\text{RH}} = 1 + \frac{1 - \text{RH}/100}{0.1 \cdot \sqrt[3]{h_0}}$$
 for $f_{\text{cm}} \le 35 \text{ MPa}$ (B.3a)

$$\varphi_{\text{RH}} = \left[1 + \frac{1 - \text{RH}/100}{0.1 \cdot \sqrt[3]{h_0}} \cdot \alpha_1\right] \cdot \alpha_2 \quad \text{for } f_{\text{cm}} > 35 \text{ MPa}$$
(B.3b)

RH is the relative humidity of the ambient environment in %

 β (f_{cm}) is a factor to allow for the effect of concrete strength on the notional creep coefficient:

$$\beta(f_{\rm cm}) = \frac{16.8}{\sqrt{f_{\rm cm}}} \tag{B.4}$$

 f_{cm} is the mean compressive strength of concrete in MPa at the age of 28 days $\beta(t_0)$ is a factor to allow for the effect of concrete age at loading on the notional creep coefficient:

$$\beta(t_0) = \frac{1}{(0,1+t_0^{0.20})} \tag{B.5}$$

h₀ is the notional size of the member in mm where:

$$h_0 = \frac{2A_c}{u} \tag{B.6}$$

Ac is the cross-sectional area

u is the perimeter of the member in contact with the atmosphere

 $\beta_{c}(t,t_{0})$ is a coefficient to describe the development of creep with time after loading, and may be estimated using the following Expression:

$$\beta_{c}(t,t_{0}) = \left[\frac{(t-t_{0})}{(\beta_{H}+t-t_{0})}\right]^{0.3}$$
(B.7)

t is the age of concrete in days at the moment considered

to is the age of concrete at loading in days

 $t - t_0$ is the non-adjusted duration of loading in days

 β_{H} is a coefficient depending on the relative humidity (*RH* in %) and the notional member size (h_0 in mm). It may be estimated from:

 $\beta_{\rm H} = 1.5 \left[1 + (0.012 \text{ RH})^{18}\right] h_0 + 250 \le 1500$ for $f_{\rm cm} \le 35$ (B.8a)

$$\beta_{\rm H} = 1.5 \left[1 + (0.012 \text{ RH})^{18}\right] h_0 + 250 \alpha_3 \le 1500 \alpha_3 \qquad \text{for } f_{\rm cm} \ge 35 \qquad (B.8b)$$

 $\alpha_{1/2/3}$ are coefficients to consider the influence of the concrete strength:

$$\alpha_1 = \left[\frac{35}{f_{\rm om}}\right]^{0.7} \quad \alpha_2 = \left[\frac{35}{f_{\rm cm}}\right]^{0.2} \quad \alpha_3 = \left[\frac{35}{f_{\rm cm}}\right]^{0.5} \tag{B.8c}$$

Where great accuracy is not required, a value found from a figure (Figure 3.1) may be considered as the creep coefficient, provided that the concrete is not subjected to a compressive stress greater than 0,45 fck (t_0) at an age t_0 , the age of concrete at the time of loading.

1.2.5. Stress-strain relations for the design of cross-sections (art 3.1.7)

For the design of cross-sections, the following stress-strain relationship may be used:

 ϵ_{c2} ~ is the strain at reaching the maximum strength in the parabola-rectangle diagram

 ϵ_{cu2} is the ultimate strain in the parabola-rectangle diagram

- ϵ_{c3} is the strain at reaching the maximum strength in the bi-linear diagram
- ϵ_{cu3} is the ultimate strain in the bi-linear diagram

The user can choose in the material library which one of the diagrams should be used for the calculation:

1.3. Reinforcing Steel

The following clauses give principles and rules for reinforcement which is in the form of bars, de-coiled rods, welded fabric and lattice girders. They do not apply to specially coated bars.

1.3.1. **Properties (art 3.2.2)**

The behaviour of reinforcing steel is specified by the following properties:

- yield strength (fyk or f0,2k)
- maximum actual yield strength (fy,max)
- tensile strength (ft)
- ductility (ϵ_{uk} and f_t/f_{yk})
- bendability
- bond characteristics (f_R)
- section sizes and tolerances
- fatigue strength
- weldability
- shear and weld strength for welded fabric and lattice girders

Materials		×
et -: 🖸 📅 🕩 🖬	🐟 🗢 🔲 😤 🕒 Reinforcement steel 🔹 🔻 🍸	
B 400A	Name B 500B	
B 500A	4 Code independent	
3 600A	Material type Reinforcement steel	
B 400B	Thermal expansion [m/mK] 0.01e-003	
3 500B	Unit mass [kg/m^3] 7850.00	
3 600B 3 400C	E modulus [MPa] 2.0000e+05	
3 400C 3 500C	Poisson coeff. 0.2	
B 600C	Independent G modulus	
B 420B (Austrian ONO	·	
3 550A (Austrian ONO	G modulus [MPa] 8.3333e+04	
B 550B (Austrian ONO	Log. decrement (non-uniform damping only) 0.2	
	Colour	
	Specific heat [J/gK] 6.0000e-01	
	Thermal conductivity [W/mK] 4.5000e+01	
	Bar surface Ribbed	~
	Order in code 5	
	Price per unit [€/kg] 1.00	
	 EN 1992-1-1 	
	Characteristic yield strength fyk [MPa] 500.0	
	Calculated depended values 🔽	
	Characteristic maximum tensile strength ftk [MF 540.0	
	Coefficient k = ftk / fyk [-] 1.08	
	Design yield strength - persistent (fyd = fyk / gar 434.8	
	Design yield strength - accidental (fyd = fyk / ga 500.0	
	Maximum elongation eps uk [1e-4] 500.0	
	Class B	
	Reinforcement type Bars	*
	Fabrication Hot rolled	· ·
		Y
	Stress-strain diagram	
	Type of diagram Bi-linear with an inclined top branch	~
	Picture of Stress-strain diagram	
New Insert Edit	Delete	Close

The steel properties can be found in the material library:

The mean value of density may be assumed to be 7850 kg/m³. The design value of the modulus of elasticity E_s may be assumed to be 200GPa.

This Eurocode applies to ribbed and weldable reinforcement, including fabric.

The application rules for design and detailing in this Eurocode are valid for a specified yield strength range, f_{yk} = 400 to 600 MPa.

Table C.1 gives the properties of reinforcement suitable for use with this Eurocode:

Product form	Bars a	nd de-coi	led rods	١	Wire Fabrio	Requirement or quantile value (%)	
Class	Α	в	с	А	В	с	-
Characteristic yield strength f_{yk} or $f_{0,2k}$ (MPa)			5,0				
Minimum value of $k = (f_t/f_y)_k$	≥1,05	≥1,08	≥1,15 <1,35	≥1,05	≥1,08	≥1,15 <1,35	10,0
Characteristic strain at maximum force, <i>ɛ</i> _{uk} (%)	≥2,5	≥5,0	≥7,5	≥2,5	≥5,0	≥7,5	10,0
Bendability	Ber	nd/Rebend	l test		-		
Shear strength	- 0,3 A f _{vk} (A is area of wire)					Minimum	
MaximumNominaldeviation frombar size (mm)nominal mass ≤ 8 (individual bar> 8or wire)(%)				6,0 4,5			5,0

Table C.1: Properties of reinforcement

1.3.2. Design assumptions (art 3.2.7)

For normal design, either of the following assumptions may be made:

- B1) an inclined top branch with a strain limit of ϵ_{ud} and a maximum stress of kf_{yk} / γ_s at ϵ_{uk} , where $k = (f_t/f_y)_k$.
- B2) a horizontal top branch without the need to check the strain limit.

The recommended value of ε_{ud} is 0,9 ε_{uk} . The value of $(f_t/f_y)_k$ is given in Table C.1.

In the material library the user can choose between the two assumptions:

1.4. **Durability and cover to reinforcement**

1.4.1. Environmental conditions (art 4.2)

Exposure conditions are chemical and physical conditions to which the structure is exposed in addition to the mechanical actions.

Environmental conditions are classified according to Table 4.1:

Class designation	Description of the environment	Informative examples where exposure classes may occur
1 No risk of	corrosion or attack	
X0	For concrete without reinforcement or embedded metal: all exposures except where there is freeze/thaw, abrasion or chemical attack For concrete with reinforcement or embedded	
	metal: very dry	Concrete inside buildings with very low air humidity
2 Corrosion	induced by carbonation	
XC1	Dry or permanently wet	Concrete inside buildings with low air humidity Concrete permanently submerged in water
XC2	Wet, rarely dry	Concrete surfaces subject to long-term water contact Many foundations
XC3	Moderate humidity	Concrete inside buildings with moderate or high air humidity External concrete sheltered from rain
XC4	Cyclic wet and dry	Concrete surfaces subject to water contact, not within exposure class XC2

Table 4.1: Exposure classes related to environmental conditions in accordance with EN 206-1

	on induced by chlorides	
XD1	Moderate humidity	Concrete surfaces exposed to airborne chlorides
XD2	Wet, rarely dry	Swimming pools
		Concrete components exposed to industrial waters
		containing chlorides
XD3	Cyclic wet and dry	Parts of bridges exposed to spray containing
		chlorides
		Pavements
		Car park slabs
	on induced by chlorides from sea water	1
XS1	Exposed to airborne salt but not in direct	Structures near to or on the coast
	contact with sea water	
XS2	Permanently submerged	Parts of marine structures
XS3	Tidal, splash and spray zones	Parts of marine structures
	haw Attack	
XF1	Moderate water saturation, without de-icing	Vertical concrete surfaces exposed to rain and
	agent	freezing
XF2	Moderate water saturation, with de-icing agent	Vertical concrete surfaces of road structures
		exposed to freezing and airborne de-icing agents
XF3	High water saturation, without de-icing agents	Horizontal concrete surfaces exposed to rain and
		freezing
XF4	High water saturation with de-icing agents or	Road and bridge decks exposed to de-icing agents
	sea water	Concrete surfaces exposed to direct spray
		containing de-icing agents and freezing
		Splash zone of marine structures exposed to
0. Oh and a	1 - 14 1-	freezing
6. Chemica		Notice to the send encound water
XA1	Slightly aggressive chemical environment	Natural soils and ground water
	according to EN 206-1, Table 2	
XA2	Moderately aggressive chemical environment	Natural soils and ground water
XA0	according to EN 206-1, Table 2	Netwol colle and ground water
XA3	Highly aggressive chemical environment	Natural soils and ground water
	according to EN 206-1, Table 2	

In the Concrete settings, in the "Design defaults" view, the user can choose the desired exposure class. All items with a blue background colour can be overwritten in the 1D member data.

	ription	Symbol	Value	Default	Unit	Chapter	Code		CheckTy
all>	Q	<all> 🔎</all>	<all> \wp</all>	<all> 🔎</all>	<p< th=""><th><all> ₽</all></th><th><all> 🔎</all></th><th><all> 🔎</all></th><th>Design $< \times$</th></p<>	<all> ₽</all>	<all> 🔎</all>	<all> 🔎</all>	Design $< \times$
	gn defaults								
	einforcement								
M	linimum cover								
_	Design working life		50.00	50.00	year	4.4.1.2(5), t	EN 1992-1-1	All (Bea	Design de
4	Risk of corrosion attack								
	Corrosion induced by carbonation		XC3	ХСЗ		4.4.1.2(5)	EN 1992-1-1	-	Design de
	Corrosion induced by chlorides		None	None		4.4.1.2(5)	EN 1992-1-1	All (Bea	Design de
	Corrosion induced by chlorides from sea water		None	None		4.4.1.2(5)	EN 1992-1-1	All (Bea	Design de
	Freeze / thaw attack		None	None		4.4.1.2(12)	EN 1992-1-1	All (Bea	Design de
	Chemical attack		None	None		4.4.1.2(12)	EN 1992-1-1	All (Bea	Design de
L	Risk of abrasion attack		None	None		4.4.1.2(13)	EN 1992-1-1	All (Bea	Design de
Þ	Possibility of special control								
	Risk of casting on atypical surface		Standard	Standard		4.4.1.3(4)	EN 1992-1-1	All (Bea	Design de
Þ	Concrete characteristics								

CMD					Х
	Name	CMD1D			^
	Member	B1			
	Member type	Column		~	
Design defaults					
4 Reinforcement					
▶ Column					
4 Minimum cover					
	Design working life [year]	50.00			
 Risk of corrosion attack 					
	Corrosion induced by carbonation			~	
	Corrosion induced by chlorides			~	
Co	rrosion induced by chlorides from sea water			*	
	Freeze / thaw attack			*	
	Chemical attack			*	
	Risk of abrasion attack	None		~	
 Possibility of special control 					
	Special geometric control				
	Special concrete quality control				
	Risk of casting on atypical surface	Standard		*	~
Actions					
		Load	l default values	>>>	
			ок	Cance	
			UN	cance	· · · ·

1.4.2. Methods of verification (art 4.4)

Concrete Cover : art 4.4.1

General (art 4.4.1.1)

The concrete cover is the distance between the surface of the reinforcement closest to the nearest concrete surface (including links and stirrups and surface reinforcement where relevant) and the nearest concrete surface.

The nominal cover shall be specified on the drawings. It is defined as a minimum cover, c_{min} , plus an allowance in design for deviation, Δc_{dev} :

 $C_{nom} = c_{min} + \Delta c_{dev}$

Minimum cover, cmin (art 4.4.1.2)

Minimum concrete cover, c_{\min} , shall be provided in order to ensure:

- the safe transmission of bond forces

- the protection of the steel against corrosion (durability)
- an adequate fire resistance

The greater value for c_{min} satisfying the requirements for both bond and environmental conditions shall be used:

 $C_{min} = \max \{C_{min,b}; C_{min,dur} + \Delta C_{dur,\gamma} - \Delta C_{dur,st} - \Delta C_{dur,add}; 10 \text{ mm}\}$ (4.2)

where:

Cmin,b	minimum cover due to bond requirement
Cmin,dur	minimum cover due to environmental conditions
$\Delta C_{dur,\gamma}$	additive safety element
$\Delta \mathbf{C}$ dur,st	reduction of minimum cover for use of stainless steel
$\Delta \mathbf{C}$ dur,add	reduction of minimum cover for use of additional protection

The recommended value of $\Delta c_{dur,y}$, $\Delta c_{dur,st}$ and $\Delta c_{dur,add}$, without further specification, is 0mm.

- In order to transmit bond forces safely and to ensure adequate compaction of the concrete, the minimum cover should not be less than c_{min,b} given in table 4.2.

Table 4.2: Minimum cover, <i>c</i> _{min,b} , requirements with regard to bond								
Bond Requirement	Bond Requirement							
Arrangement of bars	gement of bars Minimum cover c _{min,b} *							
Separated	Diameter of bar							
Bundled	Bundled Equivalent diameter (\u03c6_n)(see 8.9.1)							
*: If the nominal maximum	*: If the nominal maximum aggregate size is greater than 32 mm, c _{min,b} should be increased by 5 mm.							

- The minimum cover values for reinforcement and prestressing tendons in normal weight concrete taking account of the exposure classes and the structural classes is given by cmin,dur.

The recommended Structural Class (design working life of 50 years) is S4 for the indicative concrete strengths (given in Annex E of EN 1992-1-1). The recommended minimum Structural Class is S1.

The recommended modifications to the structural class is given in Table 4.3N:

Structural Class											
Criterion	Exposure	Exposure Class according to Table 4.1									
Citterion	X0	XC1	XC2/XC3	XC4	XD1	XD2/XS1	XD3/XS2/XS				
Design Working Life of 100 years	increase class by 2	increase class by 2	increase class by 2	increase class by 2	increase class by 2	increase class by 2	increase class by 2				
Strength Class 1)2)	≥ C30/37 reduce class by 1	≥ C30/37 reduce class by 1	≥ C35/45 reduce class by 1	≥ C40/50 reduce class by 1	≥ C40/50 reduce class by 1	≥ C40/50 reduce class by 1	≥ C45/55 reduce class b 1				
Member with slab geometry (position of reinforcement not affected by construction process)	reduce class by 1	reduce class by 1	reduce class by 1	reduce class by 1	reduce class by 1	reduce class by 1	reduce class b 1				
Special Quality Control of the concrete production ensured	reduce class by 1	reduce class by 1	reduce class by 1	reduce class by 1	reduce class by 1	reduce class by 1	reduce class b 1				

The design working life and the special quality control can be defined in the concrete settings or in the 1D member data:

Description	Symbol	Value	Default	Unit	Chapter	Code	Structure	CheckTy
II> D	<all></all>	<all></all>	⊂all> ♀	<	<all> \wp</all>	<all></all>	<all> 🔎</all>	Design (\times
Design defaults								
▶ Reinforcement								
 Minimum cover 								
Design working life		50.00	50.00	year	4.4.1.2(5), t	EN 1992-1-1	All (Bea	Design de
Risk of corrosion attack								
Corrosion induced by carbonation		ХСЗ	ХСЗ		4.4.1.2(5)	EN 1992-1-1	All (Bea	Design de
Corrosion induced by chlorides		None	None		4.4.1.2(5)	EN 1992-1-1	All (Bea	Design de
Corrosion induced by chlorides from sea water		None	None		4.4.1.2(5)	EN 1992-1-1	All (Bea	Design de
Freeze / thaw attack		None	None		4.4.1.2(12)	EN 1992-1-1	All (Bea	Design de
Chemical attack		None	None		4.4.1.2(12)	EN 1992-1-1	All (Bea	Design de
Risk of abrasion attack		None	None		4.4.1.2(13)	EN 1992-1-1	All (Bea	Design de
 Possibility of special control 								
Special geometric control					4.4.1.3(3)	EN 1992-1-1	All (Bea	Design de
Special concrete quality control					4.4.1.2(5)	EN 1992-1-1	All (Bea	Design de
Risk of casting on atypical surface		Standard	Standard		4.4.1.3(4)	EN 1992-1-1	All (Bea	Design de
Concrete characteristics								

CMD				×	<
	Name	CMD1D		^	
	Member	B1			
	Member type	Column		~	
▲ Design defaults					
A Reinforcement					
▶ Column					
Minimum cover			_		
	Design working life [year]	50.00			
 Risk of corrosion attack 					
	Corrosion induced by carbonation	XC3		*	
	Corrosion induced by chlorides	None		* * *	
Corrosic	on induced by chlorides from sea water	None		*	
	Freeze / thaw attack			~	
	Chemical attack	None		~	
	Risk of abrasion attack	None		*	
 Possibility of special control 					
	Special geometric control		-		
	Special concrete quality control				
	Risk of casting on atypical surface	Standard		× •	
Actions					
			Load default values	>>>	
				Conner	
			ОК	Cancel	

The recommended values of $c_{\mbox{\scriptsize min,dur}}$ are given in Table 4.4N (reinforcing steel):

Environmental Requirement for c _{min,dur} (mm)										
Structural	Exposu	Exposure Class according to Table 4.1								
Class	X0	XC1	XC2/XC3	XC4	XD1/XS1	XD2 / XS2	XD3/XS3			
S1	10	10	10	15	20	25	30			
S2	10	10	15	20	25	30	35			
S3	10	10	20	25	30	35	40			
S4	10	15	25	30	35	40	45			
S5	15	20	30	35	40	45	50			
S6	20	25	35	40	45	50	55			

Table 4.4N: Values of minimum cover, $c_{\min,dur}$, requirements with regard to durability for reinforcement steel in accordance with EN 10080.

- The concrete cover should be increased by the additive safety element Δcdur,γ.

Where stainless steel is used or where other special measures have been taken, the minimum cover may be reduced by $\Delta c_{dur,st}$. For such situations the effects on all relevant material properties should be considered, including bond.

For concrete with additional protection (e.g. coating) the minimum cover may be reduced by $\Delta c_{dur,add}$.

For concrete abrasion special attention should be given on the aggregate. Optionally concrete abrasion may be allowed for by increasing the concrete cover (sacrificial layer). In that case, the minimum cover c_{min} should be increased by k_1 for Abrasion Class XM1, by k_2 for XM2 and by k_3 for XM3.

Abrasion Class XM1 means a moderate abrasion like for members of industrial sites frequented by vehicles with air tyres. Abrasion Class XM2 means a heavy abrasion like for members of industrial sites frequented by fork lifts with air or solid rubber tyres. Abrasion Class XM3 means an extreme abrasion like for members industrial sites frequented by fork lifts with elastomer or steel tyres or track vehicles.

The recommended values of k_1 , k_2 and k_3 are respectively: 5 mm, 10 mm and 15 mm.

De	scription	Symbol		Value	Default	Unit	Chapter	Code	Structure	CheckTy	
all>	م	<all></all>	Q	<all></all>	<all> Q</all>			<all></all>		Design (X	
De	sign defaults		· ·								
	Reinforcement										
	Minimum cover										
	Design working life			50.00	50.00	year	4.4.1.2(5), t	EN 1992-1-1	All (Bea	Design de	
	Risk of corrosion attack										
	Corrosion induced by carbonation			XC3	XC3		4.4.1.2(5)	EN 1992-1-1	All (Bea	Design de	
	Corrosion induced by chlorides			None	None		4.4.1.2(5)	EN 1992-1-1	All (Bea	Design de	
	Corrosion induced by chlorides from sea water			None	None		4.4.1.2(5)	EN 1992-1-1	All (Bea	Design de	
	Freeze / thaw attack			None	None		4.4.1.2(12)	EN 1992-1-1	All (Bea	Design de	
	Chemical attack			None	None		4.4.1.2(12)	EN 1992-1-1	All (Bea	Design de	
	Risk of abrasion attack			None	None		4.4.1.2(13)	EN 1992-1-1	All (Bea	Design de	
	 Possibility of special control 										
	Special geometric control						4.4.1.3(3)	EN 1992-1-1	All (Bea	Design de	
	Special concrete quality control						4.4.1.2(5)	EN 1992-1-1	All (Bea	Design de	
	Risk of casting on atypical surface			Standard	Standard		4.4.1.3(4)	EN 1992-1-1	All (Bea	Design de	
	Concrete characteristics										

The abrasion class can be inputted in the concrete settings or the 1D member data:

The values of k_1 , k_2 and k_3 are available in the National Annex:

Concrete setup		×
 Concrete setup Type of values NA building Type of functionality Hollow core beams Prestressing 	Standard EN Concrete General - Concrete - Non-prestressed reinforcement - Prestressed reinforcement - Durability and concrete cover - UUS - General - SUS - Stress limitation during tensioning - SUS stress limitation - Detailing provisions - Common detailing provisions - Columns - Beams	Name Standard EN A Concrete General Concrete National annex EN_1992_1_1 Find the second
Select all Unselect all	Refresh	Load default NA parameters OK Cancel

4 Allowance in design for deviation (art 4.4.1.3)

To calculate the nominal cover, c_{nom} , an addition to the minimum cover shall be made in design to allow for the deviation (Δc_{dev}). The required minimum cover shall be increased by the absolute value of the accepted negative deviation.

The recommended value of Δc_{dev} is 10 mm.

In certain situations, the accepted deviation and hence allowance, Δc_{dev} , may be reduced.

The recommended values are:

- where fabrication is subjected to a quality assurance system, in which the monitoring includes measurements of the concrete cover, the allowance in design for deviation Δc_{dev} may be reduced:

$$10 mm \ge \Delta c_{dev} \ge 5 mm$$

 where it can be assured that a very accurate measurement device is used for monitoring and nonconforming members are rejected (e.g. precast elements), the allowance in design for deviation Δc_{dev} may be reduced:

 $10 mm \ge \Delta c_{dev} \ge 0 mm$

The special geometric control can be checked in the concrete settings or the 1D member data:

Descri	iption	Symbol	Value	Default	Unit	Chapter	Code	Structure	CheckTy	
ill>	Q	<all> 🔎</all>	<all> \wp</all>	<all> 🔎</all>	<	<all> 🔎</all>	<all> 🔎</all>	<all> 🔎</all>	Design $<$ $ imes$	
Desig	n defaults									
⊳ Re	inforcement									
⊿ Mi	inimum cover									
	Design working life		50.00	50.00	year	4.4.1.2(5), t	EN 1992-1-1	All (Bea	Design de	
	Risk of corrosion attack									
	Corrosion induced by carbonation		XC3	XC3		4.4.1.2(5)	EN 1992-1-1	All (Bea	Design de	
	Corrosion induced by chlorides		None	None		4.4.1.2(5)	EN 1992-1-1	All (Bea	Design de	
	Corrosion induced by chlorides from sea water		None	None		4.4.1.2(5)	EN 1992-1-1	All (Bea	Design de	
	Freeze / thaw attack		None	None		4.4.1.2(12)	EN 1992-1-1	All (Bea	Design de	
	Chemical attack		None	None		4.4.1.2(12)	EN 1992-1-1	All (Bea	Design de	
	Risk of abrasion attack		None	None		4.4.1.2(13)	EN 1992-1-1	All (Bea	Design de	
	Possibility of special control									
	Special geometric control					4.4.1.3(3)	EN 1992-1-1	All (Bea	Design de	
	Special concrete quality control					4.4.1.2(5)	EN 1992-1-1	All (Bea	Design de	
	Risk of casting on atypical surface		Standard	Standard		4.4.1.3(4)	EN 1992-1-1	All (Bea	Design de	
⊳	Concrete characteristics									

CMD		2
Name	CMD1D	^
Member	B1	
Member type	Column	~
Design defaults		
Reinforcement		
▶ Column		_
Minimum cover		
Design working life [year]	50.00	
4 Risk of corrosion attack		
Corrosion induced by carbonation	XC3	~
Corrosion induced by chlorides	None	*
Corrosion induced by chlorides from sea water		*
Freeze / thaw attack		* * *
Chemical attack		*
Risk of abrasion attack	None	*
Possibility of special control		
Special geometric control		
Special concrete quality control		×
Risk of casting on alypical surface	Standard	- v
Actions		
	Load default values	>>>
	ок Са	ancel

The values of Δc_{dev} can be found in the National Annex:

Concrete setup		×
 Concrete setup Type of values NA building Type of functionality Hollow core beams Prestressing 	Standard EN General General Concrete Non-prestressed reinforcement Durability and concrete cover ULS General SLS General Stress limitation during tensioning SLS stress limitation Detailing provisions Columns Beams	Name Standard EN 4 Concrete 4 General 4 Concrete 4 National annex > EN_1992_1_1 > Non-prestressed reinforcement > Prestressed reinforcement > Prestressed reinforcement > Durability and concrete cover National annex Clause 4.4.1.2(5) Formula Tables 4.3N, 4.4N, 4.5N Ac _{dur,x} - additive safety element for concrete cover 4.4.1 Value [mm] 0.0 Ac _{dur,st} - reduction of minimum concrete cover for use o Value [mm] 0.0 Ac _{dur,add} - reduction of minimum concrete cover for use Value [mm] 0.0 Ac _{dur,add} - reduction of minimum concrete cover for use Values [mm] 0.0 k _{XM} - values of abrasion for classes XM 1,2,3 4.4.1.2(13) Values [mm] 5.0 / 10.0 / 15.0
Select all Unselect all	< > > Refresh	▷ ULS Load default NA parameters OK Cancel

Chapitre 2: Design and Check

2.1. Analysis models

2.1.1. Eurocode

Structural models for overall analysis (art 5.3.1)

The elements of a structure are classified, by consideration of their nature and function, as beams, columns, slabs, walls, plates, arches, shells etc. Rules are provided for the analysis of the commoner of these elements and of structures consisting of combinations of these elements.

For buildings the following provisions are applicable:

- 1) A beam is a member for which the span is not less than 3 times the overall section depth. Otherwise it should be considered as a deep beam.
- 2) A slab is a member for which the minimum panel dimension is not less than 5 times the overall slab thickness.
- 3) A slab subjected to dominantly uniformly distributed loads may be considered to be one way spanning if either:
 - it possesses two free (unsupported) and sensibly parallel edges.
 - it is the central part of a sensibly rectangular slab supported on four edges with a ratio of the longer to shorter span greater than 2.
- 4) Ribbed or waffle slabs need not be treated as discrete elements for the purposes of analysis, provided that the flange or structural topping and transverse ribs have sufficient torsional stiffness. This may be assumed provided that:
 - the rib spacing does not exceed 1500 mm
 - the depth of the rib below the flange does not exceed 4 times its width.
 - the depth of the flange is at least 1/10 of the clear distance between ribs or 50 mm, whichever is the greater.
 - transverse ribs are provided at a clear spacing not exceeding 10 times the overall depth of the slab.

The minimum flange thickness of 50 mm may be reduced to 40 mm where permanent blocks are incorporated between the ribs.

A column is a member for which the section depth does not exceed 4 times its width and the height is at least 3 times the section depth. Otherwise it should be considered as a wall.

2.1.2. Scia Engineer

ASSIGNMENT OF ANALYSIS MODEL

In SCIA Engineer, several types of analysis models are available. It is up to the user to decide which model should be used for which element.

For 1D members, there is the choice between Beam, Beam slab and Column calculation. Each element has a property 'Type' assigned to it, to determine which type of calculation will be used:

3	
	BER (1)
登 🖊	
Name	B1
Layer	Layer1 V
Туре	column (100) 🗸 🗸
Analysis model	general (0)
FEM type	beam (80) column (100)
Cross-section	gable column (70)
Alpha [deg]	secondary column (60) rafter (90)
Member system-line at	purlin (0)
ey [mm]	roof bracing (0) wall bracing (0)
ez [mm]	girt (0)
LCS	truss chord (95)
LCS Rotation [deg]	truss diagonal (90) beam slab (99)
▼ BUCKLING	
System lengths and huckling settings	Default 🗤 📑

The Beam calculation is used for the Types 'General', 'Beam, 'Rafter', 'Purlin', 'Roof bracing', 'Wall bracing', 'Girt', 'Truss chord' and 'Truss diagonal'.

The Beam slab calculation is used only for the Type 'Beam slab'. For this type, by default no shear reinforcement is added (unless necessary in case of a slab thickness of 200 mm or more, as defined in the Concrete Settings for slabs). As diameter for the longitudinal reinforcement, the default diameter for 2D structures – and not for beams! – is taken from the Concrete Settings.

The Column calculation is used for the Types 'Column', 'Gable column' and 'Secondary column'.

Be careful when 1D member data are added to an element, via the Concrete workstation and "1D member data". Also there, the user has the choice for the 3 different analysis models, by means of the option "Member type":

CMD			×
	Name	CMD1D	^
	Member	B5	
	Member type	Beam 🔺	
Design defaults		Beam	
4 Reinforcement		Column Beam slab	
Beam / Rib		Deallistab	-11
Minimum cover			
 Solver setting 			
▲ General			
Creep and shrinkage			
▷ SLS			
Internal forces			
Design As			
Beam, Column, Rib, Bear	n Slab		
Conversion to rebars			
Interaction diagram			
▶ Shear			
▶ Torsion			v
Actions			
		Update support width >>	~
		Load default values >>	>
		OK Canc	el "

These 1D member data *overwrite* both the element properties and the default settings in the Concrete settings.

↓ DIFFERENCE BETWEEN BEAM AND COLUMN ANALYSIS MODEL

The most important difference between Beam and Column calculation is the difference in reinforcement area per direction. A beam has an upper reinforcement area that differs from the lower reinforcement area. A column always has the same reinforcement configuration for the parallel sides, per direction.

These configurations are obvious, and caused by the difference in dominant internal forces per calculation type. For a beam calculation the bending moment is dominant, while for a column calculation the axial compression force + bending moments (if present).

So in fact, when the axial pressure on a beam is too high, the user should choose to calculate the element as a column. In the concrete settings an option is available to consider if the member is in compression or not. If the member is compressed, the second order effect is taken into account. Go to the Concrete workstation and "Concrete settings", on the "Complete setup" view :

ws: Complete setup 👻 View settings 👻 Load default Find							National a	annex:	į.
Description	Symbol	Value	Default	Unit	Chapter	Code	Struc	Check	П
all>	<all> 🔎</all>	<all> 🔎</all>	<all> 🔎</all>		<all> 🔎</all>	<all> 🔎</all>	< P	<all> 🔎</all>	
Design defaults									
Reinforcement									
Minimum cover									
✓ Solver setting									
∡ General									
Limit value of unity check	Lim.check	1.0	1.0			Independ	All (Be	Solver	
Value of unity check for not calculated unity check	Ncal.check	3.0	3.0			Independ	All (Be	Solver	
The coefficient for calculation effective depth of cross-section	Coeff _d	0.9	0.9			Independ			
The coefficient for calculation inner lever arm	Coeff _z	0.9	0.9			Independ	All (Be	Solver	
The coefficient for calculation force, where member as under compression	Coeff _{com}	0.1	0.1			Independ	All (Be	Solver	
Creep and shrinkage									
Age of concrete at the moment considered	t	18250.00	18250.00	day		EN 1992			
Relative humidity	RH	50	50			EN 1992			
Type input of creep coefficient	Type q (t,t	Auto	Auto			EN 1992			
Age of concrete at loading	t ₀	28.00	28.00	day		EN 1992			
Consider drying and autogenous shrinkage	Type s _{cs} (t,t	Auto	Auto		3.1.4(6)	EN 1992			
Age of concrete at the beginning of drying shrinkage	ts	7.00	7.00	day	3.1.4(6),	EN 1992	All (Be	Solver	
▲ SLS									
Use effective modulus of concrete					7.1(2)	EN 1992-	AIL/R.e	Salver	۰.

This option 'The coefficient for calculation force, where member as under compression' will check how important the contribution of the axial compression force is:

- If the axial compression load $N_{Ed} < 0.1^*A_c^*f_{cd}$, the member is not considered to be in compression, which means the type 'Beam' is the right choice.
- If the axial compression load N_{Ed} > 0,1*Ac*f_{cd}, the member is considered to be in compression, which means the beam has to be modelled as type 'Column' and the second order effect will be taken into account.

2.1.3. Example

Over	all De	sign	(ULS)								
Load ca Coordina Extrema Selection		nber	oer r einforceme n	t							
Name	dx [m]	Case	Member	Asz reg+ [mm²] Asz reg bar+	A _{sz req} . [mm²] Asz req bar-	A _{sy req+} [mm ²] A _{sy req bar+}	A _{sy req} . [mm ²] A _{sy req bar} .	A _{sz req} [mm²] A _{sz req bar}	A _{sv req} [mm²] A _{sv req bar}	A _{s req} [mm²] A _{s req bar}	ReinfReq
				[mm ²]	[mm ²]	[mm²]	[mm²]	[mm²]	[mm ²]	[mm ²]	
B1	0,000	LC2	Column	201	201	201	201	402	402		[z]4ф16*,
				201	201	201	201	402	402		[y]4ф16*
B2	0,000	LC2	Beam	0	0	0	0	0	0	0	
				0	0	0	0	0	0	0	
B3	0,000	LC2	Beam slab	108	108	108	108	215	215		[z+]2 φ 16*,
				201	201	201	201	402	402	804	[z-]2ф16*, [y+]2ф16*, [y-]2ф16*
Shear	reinforce	ment									
Name	dx [m]	Case	Member	A _{swm req} [mm²/m]	A _{swm prov}	ShearReinf					
B1	0,000	LC2	Column	0	0		7				
B2	0,000	LC2	Beam	0	0		7				
B3	0,000	LC2	Beam slab	0	0	Not required	7				

Under internal forces, a warning will be displayed in the detailed output whether it is necessary to calculate an element as column, to take into account the compression forces. If needed, the type has to be changed manually to column in the member properties or via 1D member data.

Compression member

Limit axial force to consider member as compression:

```
N_{com} = -Coeff_{com} \cdot (f_{cd} \cdot A_c) = -0.1 \cdot (6.4 \cdot 10^6 \cdot 0.09) = -57.6 \text{ kN}
```

Check condition:

```
N_{Ed} < N_{com} = -100 \text{ kN} < -58 \text{ kN} \dots compression member
```

Warning: First and second order eccentricities should be taken to account, member should be evaluated as column (significant compressive normal force). Change type of member to Column.

2.2. Beam design

2.2.1. **Description of used example**

The example that will be used to explain reinforcement calculation in a beam is called 'beam.esa'.

The beam reinforcement calculation is explained by means of the following two span beam:

The length of the total beam is 10m and it has a dimension of 500x300mm.

The inputted loads are:

BG1 : self-weight

BG2 : permanent load

- Line load: -27kN/m
- Point load: -100kN at position x = 0,25

BG3 : variable load

- Line load: -15kN/m
- Point load: -150kN at position x = 0

2.2.2. Recalculated internal forces

Reinforcement calculation in SCIA Engineer is based on recalculated internal forces. The pure internal forces calculated by the mechanical FEM calculation are transformed according to code regulation into 'recalculated internal forces' to design the reinforcement.

These recalculated internal forces can be viewed in the Concrete settings of SCIA Engineer.

4 Shifting of bending moments (art 9.2.1.3)

Sufficient reinforcement should be provided at all sections to resist the envelope of the acting tensile force, including the effect of inclined cracks in webs and flanges.

Additional tensile forces caused by shear and torsion are taken into account in SCIA Engineer by using the simplified calculation based on shifting of bending moments according to clause 9.2.1.3(2). Shifting of bending moments is calculated only for beams and beams as slab.

For members with shear reinforcement the additional tensile force, ΔF_{td} , should be calculated. For members without shear reinforcement, ΔF_{td} may be estimated by shifting the moment curve a distance $a_l = d$ (for beams as slab). This "shift rule" may also be used as an alternative for members with shear reinforcement, where:

$$a_i = z (\cot \theta - \cot \alpha)/2$$
 (for beams) (9.2)

The additional tensile force is illustrated in Figure 9.2:

In SCIA Engineer, the user can review the recalculated internal forces. In the Concrete menu it is possible to view the internal forces and recalculated internal forces. In the figure below the difference is clearly visible:

The shifted moment line is taken into account for recalculated internal forces and by this also for the calculation of longitudinal reinforcement, if activated in the concrete settings (for the global structure) or in the 1D member data (individually per member):

Concret	e settings									×
Views:	Complete setup View settings Load default Find						1	lational a	innex: 🔣	2
De	scription	Symbol	Value	Default	Unit	Chapter	Code	Stru	Chec	Π
<all></all>	Q	<all> 🔎</all>	<all> 🔎</all>	<all> 🔎</all>		<all> 🔎</all>	<all> 🔎</all>	< P	<a <math="">\wp	
⊿ Des	ign defaults									
⊳	Reinforcement									
⊳	Minimum cover									
⊿ Sol	versetting									
⊳	General									
	Internal forces									
	Shear force reduction above supports					6.2.1(8)	EN 1992-1-1	Beam	Solver	
	Moment reduction above supports					5.3.2.2 (4)	EN 1992-1-1	Beam	Solver	
	Shifting of moment curve to cover additional tensile force caused by shear			_		9.2.1.3(2)	EN 1992-1-1	Beam	Solver	>>
	Geometric imperfection in ULS	e _{i,ULS}	~	~		5.2(2)	EN 1992-1-1	Column	Solver	
	Geometric imperfection in SLS	ei,SLS				5.2(3)	EN 1992-1-1	Column	Solver	
	Minimum eccentricity	e _{min}	In first o	In first		6.1(4)	EN 1992-1-1	Column	Solver	
	First order eccentricity with the equivalent moment					5.8.8.2(2)	EN 1992-1-1	Column	Solver	
	Second order eccentricity	e ₂	~			5.8.8	EN 1992-1-1	Column	Solver	
	Internal forces modifications									
⊳	Design As									
⊳	Conversion to rebars									
⊳	Interaction diagram									
N	Shear									

CMD				×
		Name	CMD1D	
		Member	B5	
		Member type	Beam	*
A Design defa	aults			
▷ Reinforce	ment			
▶ Minimum	cover			
Solver setti	ing			
 General 				
Creep an	id shrinka	ige		
▶ SLS				
 Internal for 	orces			
		Shear force reduction above supports		
		Moment reduction above supports		
Shifti	ing of morr	nent curve to cover additional tensile force caused by shear		
 Internal 	forces m		er : 9.2.1.3(2) EN 1992-1-1	
Beam		Remark : If the check box is ON, the additional tensile force of		ount using the shift ru
Design As				
Conversio	n to reba	rs		
Interactio	n diagrai	n		
▷ Shear				

REDUCTION OF BENDING MOMENT (art 5.3.5.5 (3) & 5.3.2.2 (4))

Another typical case of recalculated internal forces is the moment capping at supports.

Where a beam or slab is monolithic with its supports, the critical design moment at the support should be taken as that at the face of the support. The design moment and reaction transferred to the supporting element (e.g. column, wall, etc.) should be generally taken as the greater of the elastic or redistributed values.

Regardless of the method of analysis used, where a beam or slab is continuous over a support which may be considered to provide no restraint to rotation (e.g. over walls), the design support moment, calculated on the basis of a span equal to the center-to-center distance between supports, may be reduced by an amount ΔM_{Ed} as follows:

 $\Delta M_{\text{Ed}} = F_{\text{Ed,sup}} t / 8$

where:

F_{Ed,sup} is the design support reaction t is the width of the support

In SCIA Engineer this reduction of bending moment is only taken into account if it is activated in the concrete settings (for the global structure) or in the 1D member data (individually per member):

ews:	: Complete setup Y View settings 🔻 Load defau	ult	F	Find					Nationa	l annex:	
D	Description	Symbol		Value	Default	Unit	Chapter	Code	Structu	CheckT	
<all></all>	م	<all></all>	ρ	<all></all>	<all> 🔎</all>	< P	<all> 🔎</all>	<all> \wp</all>	<all> 🔎</all>	<all> 🔎</all>	
⊿ De	esign defaults										
⊳	Reinforcement										
⊳	Minimum cover										
⊿ Sc	olversetting										
⊳	General										
	Internal forces										
	Shear force reduction above supports						6.2.1(8)	EN 1992-1-1	Beam,B	Solver se	
	Moment reduction above supports						5.3.2.2 (4)	EN 1992-1-1	Beam,B	Solver se	
	Shifting of moment curve to cover additional tensile forc			~	~		9.2.1.3(2)	EN 1992-1-1	Beam,Ri	Solver se	
	Geometric imperfection in ULS	ei,ULS		~	2		5.2(2)	EN 1992-1-1	Column	Solver se	
	Geometric imperfection in SLS	ei, SLS					5.2(3)	EN 1992-1-1	Column	Solver se	
	Minimum eccentricity	e _{min}		In first order	In first or		6.1(4)	EN 1992-1-1	Column	Solver se	
	First order eccentricity with the equivalent moment				~		5.8.8.2(2)	EN 1992-1-1	Column	Solver se	
	Second order eccentricity	e2		~	Z		5.8.8	EN 1992-1-1	Column	Solver se	
	Internal forces modifications										
⊳	Design As										
⊳	Conversion to rebars										
⊳	> Interaction diagram										
	Shear										

CMD			×
	Name	CMD1D	
	Member	B5	
	Member type	Beam	~
Design defaults			
Reinforcement			
Minimum cover			
Solver setting			
4 General			
Creep and shrinkage			
▷ SLS			
 Internal forces 			_
Shear f	orce reduction above supports		
Mon	ment reduction above supports		
Shifting of moment curve to cover additiona	al tensile fo	Chapter : 5.3.2.2 (4) Code : EN 1992-1-1	
 Internal forces modifications 		ng moment above support is reduced i	
▶ Beam		 for standard support, formula 5.9 is u t the reduced moment is the same as o 	
Design As	- Tor Column suppor	t the reduced moment is the same as o	in the face of the co
Conversion to rebars			
Interaction diagram			
Shear			

The way in which the moment reduction is performed, is based on the type of support. If a standard support is defined, the reduction will be done following formula 5.9. If a column is defined the, reduction at the face of the column is used.
At the face of the column (5.3.2.2 (3))

Using formula 5.9 (5.3.2.2 (4))

In SCIA Engineer, the width "t" used for the moment reduction at supports can be set in the properties of that support:

SUPPORT II	N NODE (1)
Name	Sn1
Туре	Standard \checkmark
Angle [deg]	
Constraint	Sliding \checkmark
x	Free \vee
Y	Free \vee
Z	Rigid \checkmark
Rx	Free 🗸
Ry	Free \checkmark
Rz	Free \vee
Default size [m]	0.20

In the bottom of the 1D member data, there is an action button "Update support width". This button collects all linked members or supports of the selected member and reads their support widths.

	CMD			×
	Nam	e CMD1D		
	Memb	r B5		
	Member ty	e Beam		*
-	Design defaults			
₽	Reinforcement			
⊳	Minimum cover			
-	Solver setting			
⊳	General			
⊳	Internal forces			
⊳	Design As			
⊳	Conversion to rebars			
⊳	Interaction diagram			
⊳	Shear			
₽	Torsion			
⊳	Stress limitations			
⊳	Cracking forces			
⊳	Crack width			
⊳	Deflections			
Act	ions			
		Update	support widt	h >>>
			default value	
		2000		
			ОК	Cancel

Su	upports width				
	Name	Position [m]	Width [m]	Shear reduction	Moment reduction
1	B1	0.000	0.200		
2	B2	6.000	0.200		
ote:	The support width is	loaded from constructi	on without influen	e of angle Alpha	
ote:	The support width is	loaded from constructi	on without influen	e of angle Alpha	

The reduction of moment by moment capping at supports is illustrated for our example below:

- t = 0,2m
- $F_{Ed,sup} = 477,5kN$
- $\Delta M_{Ed} = 477,5^{*}0,2 / 8 = 11,94$ kNm

The original moment M_y at the support was 254,16kNm:

The recalculated moment clearly shows the shifting of the moment line.

REDUCTION OF SHEAR FORCES (art 6.2.1 (8))

For members subject to predominantly uniformly distributed loading, the design shear force does not need to be checked at a distance less than d from the face of the support. Any shear reinforcement required should continue to the support. In addition it should be verified that the shear at the support does not exceed $V_{Rd,max}$.

In SCIA Engineer, this reduction of shear forces is only taken into account if it is activated in the concrete settings (for the global structure) or in the 1D member data (individually per member):

ews:	Co	mplete setup 👻 View settings 👻 Load defa	ult	Find					Nationa	l annex: 🔣
De	sci	iption	Symbol	Value	Default	Unit	Chapter	Code	Structu	CheckT
all>			<all></all>	all>	<all></all>	< <i>P</i>	<all> \wp</all>	<all></all>	<all> 🔎</all>	<all> 🔎</all>
De	sig	n defaults								
	-	einforcement								
⊳	М	inimum cover								
So	lve	rsetting								
⊳	G	eneral								
	In	ternal forces								
		Shear force reduction above supports					6.2.1(8)	EN 1992-1-1	Beam,B	Solver se
	►	Reduce shear forces		On the face 🔺	On the fa		6.2.1(8)	EN 1992-1-1	Beam,B	Solver se
		Moment reduction above supports		On the face (su						Solver se
		Shifting of moment curve to cover additional tensile forc		On the face (su	pport/colum	nn) + eff	ective depth o	f cross-section	Beam,Ri	Solver se
		Geometric imperfection in ULS	ei,ULS				5.2(2)	EN 1992-1-1	Column	Solver se
		Geometric imperfection in SLS	ei, SLS				5.2(3)	EN 1992-1-1	Column	Solver se
		Minimum eccentricity	e _{min}	In first order	. In first or		6.1(4)	EN 1992-1-1	Column	Solver se
		First order eccentricity with the equivalent moment		~	~		5.8.8.2(2)	EN 1992-1-1	Column	Solver se
		Second order eccentricity	e ₂				5.8.8	EN 1992-1-1	Column	Solver se
	⊳	Internal forces modifications								
⊳	D	esign As								
⊳	C	onversion to rebars								

CMD		;
Design defaults		^
Reinforcement		
Minimum cover		
Solver setting		
4 General		
Creep and shrinkag	e	
▶ SLS		
Internal forces		
	Shear force reduction above supports 🔽	
	Reduce shear forces On the face (support/column)	*
	Moment reduction above supports On the face (support/column)	
Shifting of mome	nt curve to cover additional tensile force caused by shear	cross-section
Internal forces mod	ifications	
▷ Beam		
Design As		
Conversion to rebars		
Interaction diagram		
▷ Shear		

It is possible to choose the type of reduction of shear forces at the face of the support or at a distance d from the face of the support:

Also for the reduction of shear forces, the support width "t" is taken into account, which is taken from the properties of the support or the 1D member data. The reduction of shear forces at supports is illustrated for our example below with t = 0.2 m.

The first image displays the original V_z :

The second image shows the reduction at the face of the support:

The last image shows the reduction at the effective depth from the face:

2.2.3. Theoretical reinforcement

4 CONFIGURATION

The theoretical reinforcement is calculated out of the recalculated internal forces. It gives the amount of reinforcement needed to resist the internal forces induced by ULS loads. Since there are several workflows possible to design concrete beam elements, the theoretical reinforcement design is not mandatory to perform. Experienced users can directly jump to practical reinforcement to perform the checks on, but this theoretical approach gives a good idea of how this practical reinforcement should look like. There are two types of theoretical reinforcement:

Required reinforcement: The required reinforcement is a numerical value (mm²) of the reinforcement that is necessary in every section of the beam.

Provided reinforcement: The provided reinforcement is a template added to each beam/column consisting of basic and additional reinforcement.

The configuration of theoretical reinforcement can be found in the Concrete settings, in the "Design defaults" view. Templates of longitudinal reinforcement and stirrups for different shapes of beam are available. The concrete cover can be set for upper, lower and side faces.

ws: Design	defaults Y View settings View settings	Load defa	ault	Find					Natio	onal annex: 🔣
Descriptio	n	Symbol		Value	Default	Unit	Chapter	Code	Structure	CheckType
all>	Q	<all></all>	2	<all></all>	<all> 🔎</all>	< P	<all> 🔎</all>	<all> ₽</all>	<all> 🔎</all>	Design de $ imes$
Design de	faults									
Reinfo	prcement									
⊿ Be	am / Rib									
	Design of provided reinforcement			~				Independent	Beam,Rib	Design defa
	Rectangular section			Beam_Rec <mark>…</mark>	Beam_Rec			Independent	Beam,Rib	Design defa
	T section			Beam_Tse	Beam_Tse			Independent	Beam,Rib	Design defa
	L section			Beam_Lse	Beam_Lse			Independent	Beam,Rib	Design defa
	l section			Beam_Ise	Beam_Ise			Independent	Beam,Rib	Design defa
	Other and general			Beam_Ot	Beam_Ot			Independent	Beam,Rib	Design defa
	Longitudinal									
	✓ Upper (z+)									
	Type of cover			Auto	Auto		4.4.1	EN 1992-1-1	Beam,Rib	Design defa
	Diameter	d _{s,u}		16.0	16.0	mm		EN 1992-1-1	Beam,Rib	Design defa
	▲ Lower (z-)									
	Type of cover			Auto	Auto		4.4.1	EN 1992-1-1	Beam,Rib	Design defa
	Diameter	d _{s,I}		16.0	16.0	mm		EN 1992-1-1	Beam,Rib	Design defa
	▲ Side (y±)									
	Type of cover			Upper	Upper		4.4.1	EN 1992-1-1	Beam,Rib	Design defa
	Detailing (det)									

Several default templates for longitudinal reinforcement and stirrups are available for the different section types (provided reinforcement). These can be adapted or new ones can be made.

This template exists of basic, additional and shear reinforcement. The purpose is to compare these templates with the required reinforcement, to model the user reinforcement that is introduced later on or to convert it automatically to user reinforcement.

⇒ Longitudinal reinforcement

The basic reinforcement is present along the whole length of the beam; the additional reinforcement is present only at the zones where basic reinforcement is not sufficient to withstand (recalculated) internal forces.

A choice can be made between fixed additional bars (diameter and number) or a list with different numbers of bars with a fixed diameter. SCIA Engineer uses the least amount of necessary additional bars or places the maximum if this template is still not sufficient to resist the (recalculated) internal forces. Next to the basic and additional reinforcement you can also set a diameter for the detailing reinforcement. The detailing reinforcement is reinforcement that statically is not required but that needs to be added to the cross-section to fulfil the detailing provisions.

⇒ Shear reinforcement

For the shear reinforcement the number of cuts, the maximum number of stirrup zones, the diameter and the spacing can be set. For the spacing different types of input can be used: **Multiple** and **User defined**. Multiple means that the spacing between the stirrups will be the multiple of a set value. With User defined reinforcement the user can set the spacings that can be used. SCIA Engineer will automatically select the spacing depending on this template and the general settings in the design defaults. The option **Symmetrical** allows the user to define whether the zones in each span will be symmetrical or not.

4 CONFIGURATION FOR CONVERSION TO REBARS

The configuration for conversion to rebars can be found in the Concrete settings, in the "Complete setup" view. Different options are available:

ws:	Complete setup 👻 View settings 👻 Load d	efault		Find					Natio	nal annex: 🔣	2
De	scription	Symbol		Value	Default	Unit	Chapter	Code	Structu	CheckType	Π
all>	Q	<all></all>	P	<all></all>	<all></all>	Q>	<all> 🔎</all>	<all> 🔎</all>	<all> 🔎</all>	<all> 🔎</all>	
De	sign defaults										
⊳	Reinforcement										
⊳	Minimum cover										
So	lversetting										
⊳	General										
⊳	Internal forces										
⊳	Design As										
	Conversion to rebars										
	Unify upper reinforcement above middle support			~				Independent	Beam,B	Solver setti	
	Minimum length of long.reinforcement			1000	1000	mm		Independent	1D (Bea	Solver setti	(
	Uniformly distributed reinforcement for the column			~				Independent	Column	Solver setti	
	Number of corrected bars (neighbouring sections)			~				Independent	1D (Bea	Solver setti	
	Type of zone for corrected shear reinforcement			Geometrical	Geometri			Independent	1D (Bea	Solver setti	
⊳	Interaction diagram										
⊳	Shear										
⊳	Torsion										
⊳	Punching										
⊳	Stress limitations										
D	Cracking forces										

⇒ Unify upper reinforcement above middle support

Unifies the number of bars of upper reinforcement at the middle support. The maximum number of bars from the left and right side of the support are taken into account.

Minimum length of longitudinal reinforcement

Sets a minimum length for the longitudinal reinforcement.

⇒ Uniformly distributed reinforcement for the column

Uniform distribution of reinforcement along the whole length of the column, with maximum area from y and z edges in all sections taken into account.

⇒ Number of corrected bars (neighbouring sections)

Additional reinforcement is tested in each section for number of bars and diameter in neighbouring sections. If the additional reinforcement can be distributed to the stirrup links between basic reinforcement bars, the number of bars and diameter of additional reinforcement is increased to fulfil conditions. The reason for the correction of the number of bars of additional provided reinforcement is to have logic and symmetrical reinforcement in the cross-section along the beam.

⇒ Type of zone for corrected shear reinforcement

None - Zones for shear reinforcement are not created. Conversion of provided reinforcement to real bars is not possible.

- (A) Geometrical Member is in every span divided geometrically in zones with the same length.
- (B) Spacing Member is in every span divided in zones according to the most occurrent spacing.

4 CALCULATION OF LONGITUDINAL REINFORCEMENT As

The longitudinal reinforcement calculation is based on M_{y,recalc} represented in the previous chapter.

The only thing left to be set in the concrete setup is the material quality and default diameter:

- Material quality is set to B 500A. This can be changed in the project data or concrete 1D member data.
- The default diameter is set to 16mm. This parameter is taken from the additional reinforcement diameter of the reinforcement template under Design defaults, or from 1D member data.

The following results are obtained with these settings:

In the following image you can see the brief output in the preview:

Longitud	dinal req	uired re	einforceme	nt							
Name	dx [m]	Case	Member	Asz_req+ [mm²]	Asz_req- [mm ²]	A _{sy_req+} [mm ²]	A _{sy_req} - [mm ²]	Asz_req [mm²]	A sy_req [mm ²]	As_req [mm²]	ReinfReq
				A _{sz_req_bar+} [mm ²]	A sz_req_bar- [mm²]	A _{sy_req_bar+} [mm ²]	A _{sy_req_bar} - [mm ²]	A _{sz_req_bar} [mm ²]	A _{sy_req_bar} [mm ²]	A _{s_req_bar} [mm ²]	
S1	2,333-	ULS	Beam	0	1335 1407	0	0	1335 1407	0	1335 1407	[z-]7ф16
S1	4,833-	ULS	Beam	1470 1608	0 0	0 0	0	1470 1608	0 0	1470 1608	[z+]8¢16

You can also ask a standard or a more detailed output where you can find more information about certain parameters used in the calculation, for example:

d : lever arm of reinforcement.

 $d = h - cover - \Phi_{stirrup} - \Phi_{longitudinal beam} / 2 = 500 - 35 - 8 - 16/2 = 449 \text{ mm}$

(the cover is defined by the environmental class and is 35 mm for XC3)

The only internal force working on this beam is M_{yd} . N_d and T_d are zero.

 $A_{sy_{req}} = 0$ because there is no torsion on this beam.

Note that the detailing provisions are deactivated. Otherwise no reinforcement of $\phi = 16$ mm could be proposed, since the detailing provisions are not met (bar distance too small).

If the default diameter is set to 20mm, the following results are obtained:

Longitud	linal req	uired re	einforceme	nt							
Name	dx [m]	Case	Member	Asz_req+ [mm ²] A _{sz_req_bar+} [mm ²]	Asz_req- [mm ²] A _{sz_req_bar-} [mm ²]	A _{sy_req+} [mm ²] A _{sy_req_bar+} [mm ²]	Asy_req- [mm ²] A _{sy_req_bar-} [mm ²]	Asz_req [mm ²] A _{sz_req_bar} [mm ²]	Asy_req [mm ²] Asy_req_bar [mm ²]	As_req [mm ²] A _{s_req_bar} [mm ²]	ReinfReq
S1	2,333-	ULS	Beam	0	1343 1571	0	0	1343 1571	0	1343 1571	[z-]5φ20
<mark>S1</mark>	4,833-	ULS	Beam	1479 1571	0 0	0 0	0 0	1479 1571	0 0	1479 1571	[z+]5¢20

If you take a close look at these results, you can see that also the value for A_{s,req} has changed.

This is because the lever arm d has decreased:

d = h -cover - Φ_{stirrup} - $\Phi_{\text{longitudinal beam}}/2$ = 500 - 35 - 8 - **20**/2 = 447 mm

As you can see, the default diameter has also a slight effect on the amount of reinforcement that is required, because of the changed lever arm.

<u>Note</u> : 1D member data can be used to change the default diameter for the bar to which these data are assigned. It is obvious that the 1D member data have higher priority than the Concrete settings.

		_
CMD		
Name	CMD1D	
Member	B5	
Member type	Beam	Y
Design defaults		
Reinforcement		
Beam / Rib		
Design of provided reinforcement		
Rectangular section	Beam_Rect_Empty Y	•••
4 Longitudinal		
Material	B 500B Y	••
 Upper (z+) 		
Type of cover		۷
User defined concrete cover of upper reinforcement [m		
Diameter [mm]	16.0	۷
4 Lower (z-)		
Type of cover		۷
User defined concrete cover of lower reinforcement [mi		
Diameter [mm]	16.0	¥
Side (y±)		
Type of cover	Upper	Y
Detailing (det)		
Diameter [mm]	10.0	×
Stirrups (sw) Material	B 500B 🗸	
tions		
	Update support width >>	
	Load default values >>	>>
apter : 4.4.1		
de : EN 1992-1-1 mark : Information about type of cover of lower reinforceme	at	
nark into madon about type or cover or tower reinforceme		
	OK Cano	ce

Next to the required reinforcement area, also the unity check UC can be viewed to check for maximum reinforcement area and $A_{s,req}(\phi)$ for the reinforcement translated into bars.

			197			
ក្នា				RESUL	TS (1)	F
RESUL	.TS (1)			Name	Overall Design (ULS)	
Name	Overall Design (ULS)		▼ SELECTION			
SELECTION		_		Type of selection	All \sim	
Type of selection	All \checkmark			Filter	No V	
Filter	No V			Results in sections	All \sim	
Results in sections			▼ RESULT CASE			
RESULT CASE		_		Type of load	Combinations \vee	
Type of load	Combinations \checkmark			Combination	ULS-Set B (auto) 🗸	
Combination	ULS-Set B (auto) V		▼ EXTREME 1D			
EXTREME 1D	010 000 b (auto) .	_		Extreme 1D	Global \checkmark	
Extreme 1D	Global 🗸			Type of values	Provided \sim	
Type of values	Required \vee			Values	As,add,req	i i
Values	As,req	\sim		Interval	As,add,req	
Interval	As,req		▼ OUTPUT SETT	TINGS	As,prov Aswm,add,reg	
OUTPUT SETTINGS	Aswm,req			Output	Aswm,prov	
Output	UC (As,max) UC (Aswm,max)		DRAWING SET	TUP 1D	UC (As,req)	
DRAWING SETUP 1D	Aswm,req (φ/s)		ERRORS, WAR	NINGS AND NOTES S	UC (Aswm,req) UC (As,max)	
ERRORS, WARNINGS AND NOTES S	Components		Run using Mode	l Data files (Debug)	UC (Asymax)	
Run using Model Data files (Debug)	\cap		ACTIONS >>>	>	As,add,req (φ)	
ACTIONS >>>	<u> </u>		Refresh		As,prov (φ)	
Refresh			S Edit provide	ed reinforcement tem	Aswm,prov (φ/s) Components	
S Edit provided reinforcement terr	plate		S Concrete set	tup		
S Concrete setup			() Conversion	for real bars		
Preview			Preview			

The provided reinforcement $A_{s,prov}$ gives the amount of reinforcement or in bars ($A_{s,prov}$), determined by the template. $A_{s,add, req} = A_{s,req} - A_{s,prov}$, thus the amount of reinforcement which still has to be added to the template to resist the (recalculated) internal forces. If $A_{s,prov} > A_{s,req}$, $A_{s,add,req} = 0$.

Also unity checks can be performed on the provided reinforcement.

4 CALCULATION OF SHEAR REINFORCEMENT Aswm

Shear reinforcement										
Name	dx [m]	Case	Member	A _{swm_req} [mm²/m]	A _{swm_prov} [mm²/m]	ShearReinf				
S1	7,333-	ULS	Beam	298	309	ф8/325mm, (ns=2)				
S1	4,900	ULS	Beam	1315	1340	ф8/75mm, (ns=2)				

V_{Ed} = design shear force resulting from external loading

 $V_{Rd,c}$ = design shear resistance of the member without shear reinforcement

 $V_{Rd,s}$ = design value of the shear force which can be sustained by the yielding shear reinforcement $V_{Rd,max}$ = design value of the maximum shear force which can be sustained by the member, limited by crushing of the compression struts

In general we can have three cases:

- V _{Ed} > V _{Rd,max}	Concrete strut failure
- V _{Ed} ≤ V _{Rd,c}	Shear force carried by concrete. No shear reinforcement necessary (minimum shear reinforcement according to detailing provisions)
- V_{Ed} > $V_{Rd,c}$ and V_{Ed} < $V_{Rd,max}$	Shear reinforcement necessary in order that: $V_{Ed} \leq V_{Rd}$

⇒ Members NOT requiring design shear reinforcement: VEd < VRd,c (art 6.2.2)

$$V_{Rd,c} = [C_{Rd,c} k(100 \rho_{I} f_{ck})^{1/3} + k_{1} \sigma_{cp}] b_{w} d$$
(6.2.a)

with a minimum of :

 $V_{Rd,c} = (v_{min} + k_1 \sigma_{cp}) b_w d$

where:

The recommended value for $C_{Rd,c}$ is 0,18/ γ_c , that for k_1 is 0,15 and that for v_{min} is given by expression: $v_{min} = 0,035 \ k^{3/2}. \ f_{ck}^{1/2}$ (6.3N)

The shear force V_{Ed}, calculated without reduction by β , should always satisfy the condition: V_{Ed} ≤ 0,5 b_w d v f_{cd}

where v is a strength reduction factor for concrete cracked in shear.

The recommended value for v follows from:

$$V = 0.6 \left[1 - \frac{f_{ck}}{250} \right] \tag{6.6N}$$

(6.2.b)

(6.5)

In SCIA Engineer, it is possible to input the following parameters:

	Concrete setup			×
4.	Concrete setup Type of members 1D 2D Type of values NA building Type of functionality Hollow core beams Prestressing	Standard EN Concrete - Concrete - Non-prestressed reinforcement - Prestressed reinforcement - Durability and concrete cover - General - General - General - Festressing Allowable stress - SLS stress limitation - SL stress limitation - Columns - Beams - 20 structures and slabs - Punching	Name Standard EN Value [-1] 0.15 Standard EN Standard EN Formula Formula Formula Formula Formula Formula Standard EN Standard E	
	Select all Unselect all	< > Refresh	 v_{1a} - strength reduction factor for concrete cracked in she v_{1a} - strength reduction factor for concrete cracked in she Load default NA parameters 	ancel

Note : the green values are according to EN code.

⇒ Members requiring design shear reinforcement VEd > VRd,c (art 6.2.3)

The design of members with shear reinforcement is based on the theory of the concrete truss-model. In this theory, a virtual truss-model is imagined in a concrete beam. This truss-model has a set of vertical (or slightly diagonal), horizontal and diagonal members. The vertical bars are considered to be the stirrups, the horizontal bars are the longitudinal reinforcement bars and the diagonal bars are the concrete struts.

The angle θ should be limited.

The recommended limits of $\cot \theta$ are given: $1 \le \cot \theta \le 2,5$

The angle θ can be inserted in SCIA Engineer:

(6.7N)

ews	Complete setup View settings Load defa	ult I	Find					Nationa	l annex: 🏹	
(escription	Symbol	Value	Default	Unit	Chapter	Code	Structu	CheckT	
<all></all>	Q	<all> 🔎</all>	<all> \wp</all>	<all> \wp</all>	<p< th=""><th><all> 🔎</all></th><th><all> 🔎</all></th><th><all> 🔎</all></th><th><all> 🔎</all></th><th></th></p<>	<all> 🔎</all>	<all> 🔎</all>	<all> 🔎</all>	<all> 🔎</all>	
4 D	esign defaults									
1	Reinforcement									
1	Minimum cover									
⊿ S	olversetting									
1	General									
1	Internal forces									
1	Design As									
1	Conversion to rebars									
1	Interaction diagram									
- F	Shear									
1	Type calculation/input of angle of compression strut	Type 🖯	User(angle)	User(angle)		6.2.3	EN 1992-1-1	All (Bea	Solver se	
1	Angle of compression strut	θ	40.00	40.00	deg	6.2.3	EN 1992-1-1		Solver se	
1	Cotangent angle of compression strut	cot($\boldsymbol{\theta}$)	1.2	1.2		6.2.3	EN 1992-1-1	All (Bea	Solver se	
- L	Consider effect of axial force in nonprestressed shear che	Туре а _{си}				6.2.2(1)	EN 1992-1-1	1D (Bea	Solver se	
	 Shear between web and flanges 									
	Type input of angle of compression strut	Type 0 f	User(angle)	User(angle)		6.2.4(4)	EN 1992-1-1	Beam,B	Solver se	
	Angle of compression strut	θ _f	40.00	40.00	deg	6.2.4(4)	EN 1992-1-1	Beam,B	Solver se	
	Cotangent of angle of compression strut	$\cot(\theta_f)$	1.2	1.2		6.2.4(4)	EN 1992-1-1	Beam,B	Solver se	
	Torsion									L

For members with vertical shear reinforcement, the shear resistance V_{Rd} is the smaller value of:

$$V_{Rd,s} = \frac{A_{sw}}{s} z f_{ywd} \cot \theta$$
(6.8)

and

$$V_{Rd,max} = \alpha_{cw} b_w z v_1 f_{cd} / (\cot \theta + \tan \theta)$$
(6.9)

where:

A _{sw}	= cross-sectional area of the shear reinforcement
S	= spacing of the stirrups
f ywd	= design yield strength of the shear reinforcement
V 1	= strength reduction factor for concrete cracked in shear
α_{cw}	= coefficient taking account of the state of the stress in the compression chord

The recommended value of v_1 is v (see Expression 6.6N)

If the design stress of the shear reinforcement is below 80% of the characteristic yield stress f_{yk} , v_1 may be taken as:

$v_1 = 0,6$	for f _{ck} ≤ 60 MPa	(6.10.aN)
$v_1 = 0.9 - f_{ck}/200 > 0.5$	for f _{ck} ≥ 60 MPa	(6.10.bN)

The recommended value of α_{cw} is 1 for non-prestressed structures.

These code related parameters can be found in the Concrete setup:

If we go back to our example in SCIA Engineer, we find the following Aswm,req for the whole beam:

Shear re	inforcen	nent				
Name	dx [m]	Case	Member	A _{swm_req} [mm²/m]	A _{swm_prov} [mm²/m]	ShearReinf
S1	7,333-	ULS	Beam	298	309	ф8/325mm, (ns=2)
S1	4,900	ULS	Beam	1315	1340	ф8/75mm, (ns=2)

The maximum value of 1315 mm² corresponds to a two section stirrup of ϕ = 8mm every 75 mm.

2.2.4. Practical reinforcement

We will now pass on to the level of practical reinforcement. This will allow us to specify the reinforcement locally over the beam.

In the theoretical reinforcement design, we have calculated where reinforcement is needed. This allows us to input manually the practical reinforcement by adding New reinforcement for the whole length of the beam.

We can first select a template for the longitudinal reinforcement:

Next, we have to decide where the parameters of reinforcement are coming from:

The practical reinforcement is shown graphically on the screen:

As a user, you can add locally New stirrups or New longitudinal bars.

For the stirrups, you can select a certain stirrup shape:

Stirrup shape	manager			×
et -: 🖸 🕩	🗟 🐟 🗢 🗖			
StirrupR9				
StirrupR10				
StirrupR11				
StirrupR12				
StirrupR13		-		
StirrupR14				
StirrupR15				
StirrupR16 StirrupR17				
1	StirrupR9			
Description	Stirrups temp			
Number of stirru	1			
Diameter [mm]	8.0			
Number of cuts	2			
New Insert	Edit Delete			ОК

The stirrup shape can be edited or a new one can be made. Therefore user points may be added.

For the longitudinal reinforcement, we can define precisely where the extra practical reinforcement needs to be putted:

The selected zone of the member can be modified by the properties panel or by the menu Library / Concrete, Reinforcement / Longitudinal Reinforcement Library :

ongitudinal reinforcement				>
	2	Ĩ	Filter <u>All</u> L1-S1E4 L2-S1E2	v
	3	1	Delete Delete Name L2-S1E2 Position numbe 2 Diameter [mm] 16.0 Number of bars 2 Area [mm^2] 402 Layer type Uniform Cover type Surface to Cover [mm] 0.0 Left bar Before the Right bar Before the Stirrup name \$1	~
			Analysis model Automatic d	
LONGITUNIDAL REINFOR	NEW REINFORCEMENT PARAMETE	RS TYPE OF BEAM	REINFORCEMENT LAYERS AR	
New layer	Number of bars 2	beams and ribs	Selected layers 402	_mm'
Add bars to corners	Diameter [mm] 8.0	·	All layers 804	_ mm'
	Stirrup name S1		PICTURE PROPERTIES	
Bars positions	Edge index 2	, Edit stirrups	Draw dimensions Texts scale 0.5	+
COLLISION OF BARS			Redraw	
Collision	 Between existing bars Move layer 		OK Car	ncel

Here can be set on which face extra reinforcement needs to be added:

Longitudinal reinforcement				×
	2		Filter <u>All</u> L1-51E4 L2-51E2 L3-51E4	*
	3	1	Delete Delete Name L3-S1E4 Position numbe 7 Diameter [mm] 20.0 Number of bars 3 Area [mm^22] 942 Layer type No corner Cover type Surface to Cover [mm] 0.0 Stirrup name \$1 Edge index 4 Detailing no	^
LONGITUNIDAL REINFOR	NEW REINFORCEMENT PARAMETERS	TYPE OF BEAM	Analysis model Automatic of REINFORCEMENT LAYERS AF	
New layer	Number of bars <u>3</u> Y Diameter [mm] 20.0 Y	beams and ribs 🛛 👻	Selected layers 942 All layers 1747	mm^:
Add bars to corners Bars positions COLLISION OF BARS	Diameter [mm] 20.0 ¥ Stirrup name S1 ¥ Edge index 4 ¥	STIRRUPS Edit stirrups	PICTURE PROPERTIES Draw dimensions	
Collision	 Between existing bars Move laver 			ncel

For reasons of simplicity we will add 3 bars of 20mm that are still needed over the whole area where extra reinforcement is required. This can of course be done more detailed.

The same procedure will be repeated for the upper reinforcement over the support.

Also the shear reinforcement needs to be increased in the zones over the support. This can be done by increasing the diameter of the stirrups or by decreasing the distance between the stirrups.

Different stirrup zones can be created:

Stirrups zones			×
	048.0-0.100 2x9d8.0-0.300 2x31d8.0-0.100 2x10 0.05050 0.050 2.500 0.050 0.004 0.004 0.004 0.004	0.004 000	.0-0.099
Zone 1 Zone 2 Zone 3 Zone 4 Zone 5	Minimum stirrup reinforcement Zone Length [m] Diameter [mm] Distance [m] Real distance [m] Type By user Distance 1 3 3.000 8.000 0.100 0.100 single v yes v	Text scal tance to begin [m By user I 0.004 yes	
	Additional stirrup reinforcement Symmetrical Parts from both points		
	Input type Numbers Diameter [mm] Distance	e [m] Total distance [m]	Туре
New zone	Delete zone New part Delete part	Ok	Cancel

To check if there is enough shear reinforcement, a capacity check needs to be performed. This will be explained in the next chapter.

By selecting the reinforcement it is always possible to change the parameters afterwards through the property window.

Through view parameter settings a 3D representation of the reinforcement can be obtained:

Check / Uncheck group	Lock position
🔲 🖬 Structure 🛛 🚇 Labels 🖉 Model	🐨 Concrete 📅 Composite 🔛 Modelling/Drawing 🚭 Attributes 💹 Misc. 🔍 View
Check / Uncheck all	
Service	
Display on opening the service	
Concrete + reinforcement	
Display	
Member data	
SaT detail data	
Drawing directions for design	
Main reinforcement	
Style of main reinforcement	all
Stirrups	
Style of stirrups	all
Number of stirrups	all
Color of reinforcement	colour by diameters
Scheme of reinforcement	
Reinforcement drawing type	3D
Rounded bends	
Concrete labels	
Display label	
Name	

The total practical reinforcement of the beam is shown below:

A zoomed view shows the 3D representation:

2.2.5. Conversion of theoretical reinforcement into practical reinforcement

Since SCIA Engineer 19 it is also possible to convert theoretical reinforcement into practical reinforcement. As mentioned in previous chapter there are two types of theoretical reinforcement: **Required reinfocement** (= mm² necessary in each section) and **Provided reinforcement** (= template of reinforcement with various ammounts of additional reinforcement possible). It is only possible to convert **Provided reinforcement** into practical (=user) reinforcement.

Let's have a look at this example : open beam.esa

Set the template of provided reinforcement.

Go to Reinforcement design and look at the value $As, prov(\phi)$. This is the provided reinforcement that will be converted into practical reinforcement.

Chapitre 2: Design and Check

Press 'Conversion for real bars'

ACT	IONS >>>>
() Re	efresh
() Eo	dit provided reinforcement template
<u>ک</u> ک	oncrete setup
^ی ()	onversion for real bars
Pr	eview

The following reinforcement is generated.

The practical reinforcement is added as reinforcement data. You can edit the reinforcement by selecting it and then click on 'Edit reinforcement'.

Now the parts of the reinforcement that needs edditing can be slected. The diameter, number of bars, length, spacing , ... can be changed in the properties window.

Remark:

It might occur the error message 'Conversion of reinforcement was not done because the Type of zone of shear reinforcement is set to 'None' in the Design defaults' appears within the summary after conversion when converting the provided reinforcement into real bars. This behaviour is caused due to the option 'None' is selected for the setting 'Type of zone for corrected shear reinforcement' within the design defaults.

Summary a	after conversion		
Member S1	Additional data -	Status Not OK	Explanation Conversion of reinforcement was not done because the Type of zone for shear reinforcement is set to 'None' in the Design defaults.
<			OK S

In the example, we will increase the length and diameter of reinforcement area 5.

• 1	LONG REINFORCEMENT LAYER GENERAL	
	Name	Long5
	Position number	5
	Туре	Additional 🗸
	Torsional	
	BASIC PARAMETERS	
	No. of bars	2
	Diameter [mm]	22.00
	Area As [mm^2]	760.27
	Edge type	Upper 🗸
	Material	B 600C ∨
	GEOMETRY	
	Edge	3
	Stirrup	Shear1
	Coord. definition	Absolute \vee
	Begin [m]	4.00
	End [m]	6.00
	Length [m]	2.00
	Edge distance [mm]	43.00
	Anchorage length at begin [m]	0.00
	Anchorage length at end [m]	0.00
	DETAILED INFO BAR - 1	
	Info	φ22.0(B 600C);y=0.048;z=0.196
	BAR - 2	
	Info	φ22.0(B 600C);y=-0.048;z=0.19

2.2.6. Checks

In SCIA Engineer, checks can be performed in three different ways:

- 1. With practical reinforcement inputted on the member, checks can be done one by one for all sections of the member
- 2. With practical reinforcement inputted on the member, overall ULS or SLS checks can be done for a specific section of the member with the tool "Section check"
- 3. Without practical reinforcement, overall ULS or SLS checks can be done for a specific section of the member with the tool "Section Check". Reinforcement will then be added locally in the Section check tool to be able to perform the various available checks.

First you get an overview of the input data for the checks:

- Internal forces: displaying the characteristic and design values
- Slenderness: determining if 2nd order effects need be considered (for member type 'column')
- Stiffnesses: displaying the values EA, El_y and El_z

Available checks at the Ultimate Limit State are:

- Capacity check: for N-My-Mz interaction based on resistance calculated from interaction diagram
- Response check: based on check of ultimate stresses and strains for N-My-Mz interaction
- Check of shear and torsion
- Check of interaction of shear, torsion, bending and normal force

Available checks at the Serviceability Limit State are:

- Stress limitation (for concrete as well as reinforcing steel)
- Crack width limitation
- **Simple check for deflection:** based on calculation of stiffness ratio, without necessity to calculate Code Dependent Deflection (CDD)

The capacity, response and shear + torsion check should be okay if no additional reinforcement is required.

However, these checks give interesting information on the efficiency of reinforcement. For instance, if in a section only 50% of reinforcement is used, then we can conclude that here less reinforcement would have been sufficient.

The detailing provisions and the crack limitation are extra checks that are not accounted in the reinforcement design. If these checks are not okay, then the practical reinforcement needs to be changed.

In the following chapters, we will explain the checks one by one when practical reinforcement is inputted. It corresponds to the 1st method to perform a check (see above).

Example 1: 'beam_practical reinforcement.esa'

The last chapter will be focused on the Section check tool, corresponding to 2nd and 3rd methods to perform a check (see above).

Example 2: 'beam_without practical reinforcement.esa'

CAPACITY RESPONSE

The Capacity - response is based on the calculation of strain and stress in a particular component (concrete fibre or reinforcement bar).

The check consists of the comparison of those strains and stresses with the limited values according to EN 1992-1-1 requirements.

However, this method does not calculate extremes (capacities of the cross-section) like the interaction diagram, but calculates the state of equilibrium for that section (response). For capacities of the member, please refer to the "Capacity – diagram" check.

The following checks are performed:

- Check of compressive concrete (cc)
- Check of compressive reinforcement (sc)
- Check of tensile reinforcement (st)

The Unity Check, UC, displayed on the screen will be the maximum value of those 3 checks.

Example: 'beam_practical reinforcement.esa'

Run the Capacity – Response check in Design > Concrete 1D > ULS response check.

The maximum value of the check is given on the middle support. The Standard output gives:

Beam S1					RECT	(500; 3	300)				
CEN 1992-1-1:2	2004/AC:200	8			Section 26 [dx = 5 m]						
Member length Buckling y-y-	L	-	0 m (swa	7. S.	Concrete: C30/37 Bi-linear stress-strain diagram Exposure class: XC3						
Buckling z-z-	↓ ² ↓ y	5φ2 2φ2	0 m (swa 0 (1571 n 0 (628 mr 1/100 mm,	nm2)	Longitu Bi-linea $7\varphi 20 \text{ n}$ $\rho_1 = 1.4$ Shear re Bi-linea $\varphi 10/99$ $\rho_w = 1.$ Cover (s Top: 36	dinal rei ar with ar ar m ($A_s =$ 466% (17 einforcerar with ar0.7 mm (n051% (1. $stirrup)mmm$ 36 mm 5 mm	nforcen inclined 2199 mi 3.3 kg/m ment: B inclined s = 2) (A) 500A d top bran A _{sw} = 157 r	nch		
Type of component	Fibre / Bar	ε _{extr} [‰]	σ _{extr} [MPa]	Check strain [-]	Check stress [-]	UC [-]	Limit [-]	Status			
	1	4.00	10.7	0.17	0.02	0.05			1		
Concrete	1	-1.63	-18.7	0.47	0.93	0.95	1	OK			

In the Standard output you can read the UC, and the extreme strain and stress in the studied section.

In the Detailed output you will get all the strains and stresses and the limit strains and stresses:

Type of component	Fibre /	ε	ε _{lim}	σ	σ _{lim}	UC [-]	Status
	Bar	[‰]	[‰]	[MPa]	[MPa]		
Concrete - compression	1	-1.63	-3.5	-18.7	-20	0.93	ОК
Concrete - tension	3	2.64	0	0	0	0.00	ОК
Reinforcement - compression	3	-1.16	-22.5	-233	-454	0.51	ОК
Reinforcement - tension	1	2.17	22.5	434	454	0.95	ОК

1

Note that the tensile stress in concrete is not considered, therefore the corresponding UC is 0.

Stress and strain diagrams are also available in the Detailed output:

Settings that might influence the check:

Effective depth of cross-section - d

It is usually defined as distance of the most compressive fibre of concrete to center of gravity of tensile reinforcement. In SCIA Engineer, the effective depth of cross-section is defined as distance of the most compressive fibre of concrete to position resultant of forces in tensile reinforcement.

The effective depth d cannot be calculated in the following cases:

The most compressive fibre cannot be determined (the whole cross-section is in tension) -

- Resultant of forces in tensile reinforcement cannot be determined (whole section is in compression)
- Equilibrium is not found -
- Distance of the most compressive fibre and Resultant of forces in tensile reinforcement is less than 0,5*h

In those cases, the effective depth is calculated according to formula :

d = Coeff_d * h

With :

by default 0,9 in Concrete settings, in "Complete Setup" view, and in "Solver settings" Coeff_d / "General" h

height of cross-section perpendicular to neutral axis

oncrete settings																
iews: Complete setup 💌 View settings 💌 Loa	d defa	ault		Find								Na	itiona	il annex	$\langle \rangle$	
Description		Symbol		Value		Defau	lt	Unit	Chapter		Code	Stru	:tu	Check	т	
<all></all>	ρ	<all></all>	ρ	<all></all>	P	<all></all>	ρ	<,D	<all></all>	ρ	<all></all>	<all></all>	P	<all></all>	2	
Design defaults																
Reinforcement																
Minimum cover																
✓ Solver setting																
∡ General																
Limit value of unity check		Lim.che	ck	1.0		1.0					Independent	All (B	ea	Solver	se	
Value of unity check for not calculated unity check		Ncal.che	eck	3.0		3.0					Independent	All (B	ea	Solver	se	
The coefficient for calculation effective depth of cross	-sec	. Coeff _d		0.9		0.9					Independent	All (B	ea	Solver	se	
The coefficient for calculation inner lever arm		Coeff _z		0.9		0.9					Independent	All (B	ea	Solver	se	
The coefficient for calculation force, where member	as u	Coeff _{com}		0.1		0.1					Independent	All (B	ea	Solver	se	
Creen and shrinkage																

Inner lever arm •

z is defined in EN 1992-1-1, clause 6.2.3 (3) as the distance between position resultant of tensile force (tensile reinforcement) and position of resultant of compressive force (compressive reinforcement and compressive concrete).

The inner lever arm cannot be calculated in the following cases:

- The most compressive fibre cannot be determined (the whole cross-section is in tension)
- Resultant of forces in tensile reinforcement cannot be determined (whole section is in compression)
- Equilibrium is not found -

In those cases, it is calculated according to formula :

$z = Coeff_z * d$

With:

Coeffz

by default 0,9 in Concrete settings, in "Complete Setup" view, and in "Solver settings" / "General"

oncr	ete	e settings												_		
iews	: _	Complete setup View settings Load defa	ault	Find								N	ationa	il annex		
C)es	scription	Symbol	Value		Default		Unit	Chapter		Code	Stru	ctu	Check	т [1
<all></all>	•	Q	<all></all>) <all></all>	ρ	<all></all>	ρ	<,D	<all></all>	ρ	<all></all>	<all></all>	ρ.	<all></all>	2	
⊿ D)es	ign defaults														
D	>	Reinforcement														
¢	>	Minimum cover														
⊿ S	ol	versetting														
	4	General														
		Limit value of unity check	Lim.check	1.0		1.0					Independent	All (B	ea	Solver	se	
		Value of unity check for not calculated unity check	Ncal.check	3.0		3.0					Independent	All (B	ea	Solver	se	
		The coefficient for calculation effective depth of cross-sec	Coeff _d	0.9		0.9					Independent	All (B	ea	Solver	se	
		The coefficient for calculation inner lever arm	Coeff _z	0.9		0.9					Independent	All (E	ea	Solver	se	
		The coefficient for calculation force, where member as u	Coeff _{com}	0.1		0.1					Independent	All (E	ea	Solver	se	
		Creep and shrinkage														

For additional information about this check and the theoretical background, please refer to our web help.

CAPACITY DIAGRAM

Capacity - diagram services uses the creation of interaction diagram (graph presenting the capacity of a concrete member to resist a set of N + My + Mz).

This check calculates the extreme allowable interaction between the normal force N and bending moments My and Mz.

Example: 'beam_practical reinforcement.esa'

Run the Capacity – Diagram check in Design menu > Concrete 1D > ULS capacity diagram check

The standard output gives the summary result of the check:

mma	nmary of check												
N	N _{Ed}	$\mathbf{N}_{\mathrm{Rd}+}$	My	M _{Edy}	M _{Rdy+}	M _{Rdy-}	UC	Status					
		N _{Rd-}	Mz	M _{Edz}	M _{Rdz+}	M _{Rdz} -							
[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]	[kNm]	[-]						
0	0	0	-261	-261	119	-278	0.939	ОК					
		0	0	0	0	0		M_{Edz}/M_{Rdz}					

The Detailed output gives additional info about how the check is performed:

Summary of check	
Forces: $N_{Ed} = 0 \ kN \ M_{Edy} = -261 \ kNm \ M_{Edz} = 0 \ kNm$	
Resistance: $N_{Rd} = 0 \ kN$ $M_{Rdy} = -278 \ kNm$ $M_{Rdz} = 0 \ kNm$	
Calculation of unity check	
$UC = \frac{\sqrt{N_{Ed}^{2} + M_{Edy}^{2} + M_{Edz}^{2}}}{\sqrt{N_{Rd}^{2} + M_{Rdy}^{2} + M_{Rdz}^{2}}} = \frac{\sqrt{0^{2} + -261^{2} + 0^{2}}}{\sqrt{0^{2} + -278^{2} + 0^{2}}} = 0.939$	<= 1 OK

Interaction diagrams are also drawn in the Detailed output:

Settings that might influence the check:

- Interaction diagram method
- Division of strain
- Number of points in vertical cuts

For additional information about this check and the theoretical background, please refer to our web help.

SHEAR + TORSION

Check of Interaction shear and torsion consists of three checks according to clause 6.1 - 6.3 in EN 1992-1-1:

- check of shear
- check of torsion
- check of interaction of shear and torsion

This check can be performed if the following conditions are met:

- The material of all reinforcement bars and stirrups are the same
- The angle between gradient of the strain plane and the resultant of shear forces is not greater than 15°
- Cross-section with one polygon and one material

Example: 'beam_practical reinforcement.esa'

Run the Shear + Torsion check in Design > Concrete 1D > ULS Shear and Torsion check

Some parts of the beam do not satisfy:

The Standard output allows us to identify which specific check is not satisfied:

orces						
Content of combination: 1.35*LC1+1.35*LC2+	1.50*LC3					
$N_{Ed} = 0 \text{ kN}$ $M_{Edy} = 203 \text{ kNm}$ $M_{Edz} = 0 \text{ kNm}$	V _{Edy} = 0 k	N V _{Edz} = -152	kN T _{Ed}	= 0 kNm		
Resultant of shear force		Difference	between	angles α_M	and α_V	
$V_{Ed} = \sqrt{V_{Edy}^2 + V_{Edz}^2} = \sqrt{0^2 + -152^2} =$	152 kN	α _{MV} = a	bs(α _M –	α _V)= abs(9	90 – 90) = 0 °	
immary of check d = 445 mm z = 383 mm b _w = 300 mm b _w						
Type of check	n = 300 mn	n V _{Rdc} = 87.8 Resistances			V _{Edmax} = 705 kN	V _{Rdmax} = 598 kN
		Resistances			V _{Edmax} = 705 kN	V _{Rdmax} = 598 kM
Type of check	Forces	Resistances 66.5 kN	UC [-]	Status	V _{Edmax} = 705 kN	V _{Rdmax} = 598 kM
Type of check Check shear Vy+Vz	Forces 151.7 kN	Resistances 66.5 kN	UC [-] 2.28	Status Not OK	V _{Edmax} = 705 kN	V _{Rdmax} = 598 kN
Type of check Check shear Vy+Vz Check torsion	Forces 151.7 kN	Resistances 66.5 kN	UC [-] 2.28 0.00	Status Not OK OK	V _{Edmax} = 705 kN	V _{Rdmax} = 598 kN
Type of check Check shear Vy+Vz Check torsion Interaction check Vy+Vz+T (concrete)	Forces 151.7 kN 0.0 kNm	Resistances 66.5 kN 0.0 kNm	UC [-] 2.28 0.00 0.00	Status Not OK OK OK	V _{Edmax} = 705 kN	V _{Rdmax} = 598 kN

Here the shear forces cause a unity check >1.

In the Detailed output we can read notes, warning and errors about the design. For example, for the shear forces check not satisfied, the report clearly explains that the shear reinforcement is not sufficient and that we have to increase it.

Shear check
Check V _{Rdmax}
V_{Ed} = 152 kN \leq V_{Rdmax} + V_{ccd} + V_{td} = 598 kN
Note: The check satisfies for crushing of the compression strut ($V_{Ed} \le V_{Rdmax} + V_{td} + V_{ccd}$).
Check V _{Edmax}
V_{Ed} = 152 kN \leq V_{Edmax} + V_{ccd} + V_{td} = 705 kN
Note: The check satisfies for shear force near the support ($V_{Ed} \leq V_{Ed,max} + V_{td} + V_{ccd}$).
Check V _{Rdc} and V _{Rds}
V_{Ed} = 152 kN > V_{Rdc} = 87.8kN and V_{Ed} = 152 kN > V_{Rds} + V_{ccd} + V_{td} = 66.5 kN
$ \label{eq:Error: The check does not satisfy, because of shear reinforcement (V_{Ed} > V_{Rds} + V_{ccd} + V_{td}). It is necessary to increase area of shear reinforcement or to increase dimensions of the cross-section or quality of shear reinforcement. $
Unity check
$UC = \frac{abs(V_{Ed})}{V_{Rd}} = \frac{abs(152 \text{ kN})}{66.5 \text{ kN}} = 2.28$

Various actions can be done to fix this issue. In this example, we choose to decrease the spacing of the stirrups in the section where there is an issue.

Select stirrups and click on "Edit stirrups distances" at the bottom of the Properties of the stirrup layers:

REINFORCEME	NT LAYER (1)	\bigtriangledown
B		
Name	RL	
Type of zone	stirrups	
Detailing	0	
Position number	6	
Material	B 500A 🗸	E
Calculation of cuts number	User V	
Number of cuts	2.00	
Diameter of mandrel dm =x*ds(s), x =	4.00	
ANCHORAGE		
Torsion type	DV	
Anchorage L [mm]	120.00	
Keep formwork		
GEOMETRY		
Test of overlapping stirrups	\bigcirc	
Member	51	
Whole length beam/span		
Coord. definition	Rela \checkmark	
Position x ₁	0.000	
Position x ₂	1.000	
Origin	From start \checkmark	
 DESCRIPTION POSITIONS 		
Vertical [m]	-0.40	
SCHEME OF REINFORCEMENT		
Horizontal position in X direction [m]	0.00	
Vertical position in Z direction	0.00	
ACTIONS >>>>		
Edit stirrup shape		
S Edit covers		
Edit stirrups distances		

Select "Zone 2" and change the distance between stirrups from 0.3 m to 0.1 m. Apply the same procedure for "Zone 4" and modify the spacing to 0,2 m:

We could also have added more stirrups like below:

		2				51 52	
						Delete	Delete all
						Name	S2
			1.00			Color Number of verte	
	3		1			Number of verte	
						Detailing	no
						Torsion	no
						Shear in joint	no
		4	-			Analysis mo	
						SHEAR CALCULAT	ION
STIRRUP	USER DEFINED POI					Number of cuts	4
STIRRUP New stirrup	em-edge ind	e Type Rela	and the second				
	em-edge ind 1 2.Edge	¢ Type Rela Re ¥ 0.30	0	Begin	-	Number of cuts Diameter of mano PICTURE PROPERT	14 0
	em-edge inde 1 2.Edge 2 2.Edge	€ Type Rela Re ♥ 0.30 Re ♥ 0.30	0	Begin End	*	Diameter of mano PICTURE PROPERT	1 4 c TIES tion points
New stirrup	em-edge ind 1 2.Edge	¢ Type Rela Re ¥ 0.30	0 0 0	Begin	* * * *	Diameter of mano PICTURE PROPERT	t 4 d TIES tion points points

Changing the stirrup shape allows us to keep a bigger distance of 0.2m between stirrups in "Zone 2".

After modification, the shear + torsion check is satisfied:

Settings that might influence the check:

• Coefficient for calculation of effective depth of cross-section

Default value 0,9 in Concrete settings > Complete Setup view > Solver settings > General

• Coefficient for calculation of inner lever arm

Default value 0,9 in Concrete settings > Complete Setup view > Solver settings > General

• Angle of concrete compression strut

3 types of input in Concrete settings > Solver settings > Shear:

- User (angle) user input of the angle by default
- User (cotangent) user input of the cotangent
- Auto automatic calculation of the angle fulfilling equation 6.29

ncret	rete settings											— 🗆	×
ews:	s: Complete setup 👻 View settings 💌	Load defa	ault		Find						Nationa	il annex:	
De	Description		Symbo	l	Value	Defau	lt	Unit	Chapter	Code	Structu	CheckT	
all>	>	Q	<all></all>	P	<all></all>	<all></all>	ρ	<	<all> 🔎</all>	<all></all>	all> 🔎	<all> 🔎</all>	
De	Design defaults												
⊳	Reinforcement												
⊳	> Minimum cover												
So	Solver setting												
⊳	General												
⊳	Internal forces												
⊳	Design As												
⊳													
	Interaction diagram												
4	4 Shear												
L	Type calculation/input of angle of compression :	trut	Type 🖯		User(angle) 🔺	User(a	ngle)		6.2.3	EN 1992-1-1	All (Bea	Solver se	
L	Angle of compression strut		θ		Auto	.00		deg	6.2.3	EN 1992-1-1	All (Bea	Solver se	
L	Cotangent angle of compression strut		cot(0)		User(angle)	4) E			6.2.3	EN 1992-1-1	All (Bea	Solver se	
L	Consider effect of axial force in nonprestressed s	near che	Type 🕰	"	User(cotanger	it)			6.2.2(1)	EN 1992-1-1	1D (Bea	Solver se	
	 Shear between web and flanges 												
	Type input of angle of compression strut		Type 0 f		User(angle)	User(a	ngle)		6.2.4(4)	EN 1992-1-1	Beam,B	Solver se	
	Angle of compression strut		θ _f		40.00	40.00		deg	6.2.4(4)	EN 1992-1-1	Beam,B	Solver se	

The angle should be between θ_{min} and θ_{max} defined in the NA for EN1992-1-1.

Angle of shear reinforcement

Practical reinforcement can only be introduced at 90°.

• Type for determination equivalent thin-walled cross-section

For additional information about this check and the theoretical background, please refer to our web help.

4 STRESS LIMITATION

Stress limitation is based on the verification of:

• **compressive stress in concrete** - the high value of compressive stress in concrete could lead to appearance of longitudinal cracks, spreading of micro-cracks in concrete and higher values of creep (mainly nonlinear). This effect can lead to a state where the structure is unusable.

• **tensile stress in reinforcement** - stress in reinforcement is verified due to limitation of unacceptable strain existence and thus appearance of cracks in concrete.

Example: 'beam_practical reinforcement.esa'

The stress limitation check is done according to the following steps:

- Verification of crack appearance
- Verification of the stresses

The Standard output shows those 2 steps:

Load	Type of	Ec	Combi.	NEd	MEdy	M _{Edz}	σ _{ct}	h	f _{ct,eff}	Cracks
	module	[MPa]		[kN]	[kNm]	[kNm]	[MPa]	[mm]	[MPa]	appear
Short	Ec	0	Char.	0	-188	0	12.6	500	2.9	YES

Stress limitation in concrete

Check type	Load		M _{Edy} [kNm]		y _i [mm]	z _i [mm]	σ _c [MPa]	σ _{c,lim} [MPa]	σ c /σ c,lim [-]	Status
§7.2(2) Char.	Short	0	-188	0						OFF
§7.2(3) QP.	Short	0	-188	0	0.15	-0.25	-21.2	-13.5	1.57	Not OK

Stress limitation in non-prestressed reinforcement

Check type	Load	\mathbf{N}_{Ed}	$\mathbf{M}_{\mathrm{Edy}}$	$\mathbf{M}_{\mathrm{Edz}}$	y i	z i	σs	σ _{s,lim}	σ _s /σ _{s,lim}	Status
		[kN]	[kNm]	[kNm]	[mm]	[mm]	[MPa]	[MPa]	[-]	
§7.2(5) Char.	Short	0	-188	0	0.09	0.2	300	400	0.75	ОК

Verification of crack appearance

Crack appearance is verified for characteristic load combination in accordance to chapter 7.1(2) in EN1992-1-

1:

- $\sigma_{ct} \leq f_{ct,eff}$ no crack appears
- $\sigma_{ct} > f_{ct,eff}$ crack appears

With:

 σ_{ct} maximal tensile stress in concrete fibre f_{ct,eff} effective concrete tensile strength

Verification of stresses

There are 3 stress limitations checked:

- $\sigma_{c,char,lim} \leq k_1 * f_{ck}$ concrete stress under Char. load 7.2(2) exposure classes XD, XF, XS
- $\sigma_{c,qp,lim} \le k_2 * f_{ck}$ concrete stress under Quasi Perm. load chapter 7.2(3)
- $\sigma_{s,char,lim} \le k_3 * f_{vk}$ reinforcement stress under Char. Load chapter 7.2(5)

Values of k1, k2, k3, are defined in the NA, standard values are respectively 0.6, 0.45, 0.8

Additionally, when the stress in the reinforcement is caused by an imposed deformation, then the maximal strength is increased to $k_4 * f_{yk}$, where k_4 is NA parameter with standard value $k_4 = 1,0$. This option can be activated in Concrete settings > Stress limitations:

ews:	Complete setup Y View settin	gs 🕶 🗌 L	oad default	: Fin	ıd	Natio	nal ann	exc - {[]} -		
De	scription	Symbol	Value	Defa U.	Chapt	Code	Stru	Chec		Remark
all>	٦	<al th="" 🔎<=""><th><all> 🔎</all></th><th>< P</th><th><al th="" 🔎<=""><th><all> 🔎</all></th><th><, P</th><th>< P</th><th></th><th></th></al></th></al>	<all> 🔎</all>	< P	<al th="" 🔎<=""><th><all> 🔎</all></th><th><, P</th><th>< P</th><th></th><th></th></al>	<all> 🔎</all>	<, P	< P		
De	sign defaults									
⊳	Reinforcement									
⊳	Minimum cover									
So	lversetting									_
⊳	General									k ₃ x f _{yk}
⊳	Internal forces									N 3 ^ 'yk
⊳	Design As									
⊳	Conversion to rebars									_
⊳	Interaction diagram								<<	\mathbf{X}
⊳	Shear									
⊳	Torsion									k₄ × f _{vk}
1	Stress limitations									K₄× Iyk
L	 Indirect load (imposed deformation) 				7.2(5)	EN 1992	All (B	Solver		
	Stress limit in the reinforcement		Auto	Auto	7.2(5)	EN 1992	All (B	Solver		
⊳	Cracking forces									When the stress in reinforcement is caused by the
⊳	Crack width									indirect load (imposed deformation) then the stress
	Deflections									should not exceed different maximal value
⊳	Detailing provisions		-							

By default, stress limitation check is done for short-term state.

It is possible to perform a long-term state. Effective E modulus of elasticity is calculated as follows, using the creep coefficient:

$$E_{c,eff} = E_{cm} / (1 + \phi)$$

Long-term behaviour can be activated in Concrete Setting > Complete Setup view > Solver settings > General > SLS > Use effective modulus of elasticity.

The creep coefficient can whether be calculated by the software or inputted manually in the Concrete settings.

Note: Scia Engineer is not able to use characteristic or quasi-permanent combinations together in one step. Therefore, the same forces (load combination) are used for crack appearance and final stress values.
4 CRACK WIDTH

The crack width is calculated according to clause 7.3.4 in EN 1992-1-1.

The following preconditions are used for calculation:

- The crack width is calculated for beams and columns and for general loads (N + My + Mz)
- Cross-section with one polygon and one material is considered in version SEN 17
- The material of all reinforcement bars must be the same in SEN 17
- Appearance of cracks should be calculated for a characteristic combination according to EN 1992-1-1, clause 7.2(2). A simplification is made in SEN 17 that the normal stress is calculated for the same type of combination as used for the calculation of crack width, inputted in service Crack control.

Example: 'beam_practical reinforcement.esa'

First a determination whether the section is cracked or un-cracked is performed by comparing:

- $\sigma_{ct} \leq \sigma_{cr}$ Uncracked
- $\sigma_{ct} > \sigma_{cr}$ Cracked

Value for σ_{cr} can be set in the Concrete settings > Cracking forces. Two options can influence this value:

Value of strength for calculation of cracking forces:

- $\sigma_{cr} = 0MPa$ cracks appear when tensile stress occurs in the section
- $\sigma_{cr} = f_{ct,eff}$ cracks appear when tensile effective strength of concrete is reached in the section

Type of strength for calculation of cracking forces:

If previous option is set on $\sigma_{cr} = f_{ct,eff}$, which is the default value then:

- f_{ct,eff} = f_{ctm} mean tensile strength of concrete at 28 days set in the material properties.
- $f_{ct,eff} = f_{ctm,fl}$ mean flexural tensile strength (EN 1992-1-1,clause 3.1.8(1)). This value should be used if restrained deformations such as shrinkage or temperature movements are considering for calculation crack width.

Note: The value presented in material properties (picture above) is the mean tensile strength at 28 days. If cracking is expected earlier than 28 days, it is necessary to input this value $f_{ctm}(t)$ into the material properties (EN 1992-1-1,clause 3.1.2(9)).

The check of crack appearance, with values of cracking forces (N_{cr} , M_{cry} , M_{crz}) can be read in the Detailed output:

Here, modulus E is taken for short-term state. As mentioned previously, long-term state with an effective modulus E_{eff} can be chosen in Concrete settings > Complete Setup view > General > SLS > Use effective modulus E.

In this example, cracks appear.

Crack width is then calculated according to EN 1992-1-1, formula 7.8:

$$W = S_{r,max} \cdot (\epsilon_{sm} - \epsilon_{cm})$$

For further details about the calculation, the Detailed output can be analysed. The following picture shows only a part of the report:

Standard output will give the summary values:

Summar	y of c	heck						
$N_{cr} = 0 k$	N M _c	_{ry} = -43.3 kN	$M_{crz} = 0 \text{ kN}$ o	o _s = 300 MPa	$s_{r.max}$ = 232 mm	ε _{sm_cm} = 1.3 9	60	
σ _{ct} [MP	a]	σ _{cr} [MPa]	Cracked	w [mm]	w _{lim} [mm]	UC [-]	Limit check [-]	Status
12.	6	2.9	YES	0.303	0.4	0.76	1	OK

The limit value of the crack width w_{max} is by default automatically calculated according to EN 1992-1-1 (Table 7.1N). The allowable crack width can be seen in the NA setup:

The user can manually input the limiting crack width in the Steel workstation > 1D member data:

III (MD								\times
		Name	CMD1D						
		Member	\$1						
		Member type	Beam						*
4.0)esign defaults								
	Reinforcement								
⊳	Beam / Rib								
⊳	Minimum cover								
4 S	olver setting								
⊳	General								
⊳	Internal forces								
	Design As								
	Conversion to rebars								
	Interaction diagram								
	Shear								
	Torsion								
	Stress limitations								
	Cracking forces			-					
11	Crack width		11 con	+					
		Type of maximal crack width		÷					*
		User defined crack width [mm]	0.300						
Þ	Deflections								
Acti	ons								
							support wid		~>>
						Load	default valu	ies >	~>>
							ОК	Car	ncel
								Cui	

DEFLECTION

The calculation of deflection is done according to chapter 7.4.3 from EN 1992-1-1.

Two kinds of deflection calculations are possible in the software:

- Simplified method where the calculation is done twice, assuming the whole member to be uncracked and fully cracked, and then interpolating formula 7.18 according to clause 7.4.3(7). This is the default used method.
- Code dependent deflection. This is the most rigorous method to calculate deflection by computing the calculation of curvatures at frequent sections along the member and then calculate the deflection by numerical integration. More information about this method can be found in the chapter **Code dependent deflections**.

The <u>calculation procedure for the simplified method</u> can be described in the following steps:

- 1. Calculation of short-term stiffness using E modulus at 28 days.
- 2. Calculation of long-term stiffness using effective E modulus based on creep coefficient.

In the current version of the software, it is not possible to distinguish between the short-term and longterm part of the load in a combination. Therefore, some preconditions have been established for determination of the long-term part of the load. The long-term part of the load (LongTermPercentage) is estimated based on the type of combination. There are three main SLS combinations:

SLS characteristics - LongTermPercentage = 70 %

SLS frequent - LongTermPercentage = 85 %

SLS quasi-permanent- LongTermPercentage = 100 %

The creep-factor is calculated by the software depending on the relative humidity, outline of the crosssection, reinforcement percentage, concrete class, etc. It can also be manually inputted in the Concrete setup > Complete setup view > General > Creep:

ws: Co	mplete setup 👻 View settings 💌 Load defau	lt Fir	nd					Nation	al annex: 🔣
Descri	iption	Symbol	Value	Default	Unit	Chapter	Code	Structure	CheckTy
all>	Q	<all> 🔎</all>	<all></all>	<all> ₽</all>	<p< th=""><th><all> 🔎</all></th><th><all></all></th><th><all> 🔎</all></th><th><all> 🔎</all></th></p<>	<all> 🔎</all>	<all></all>	<all> 🔎</all>	<all> 🔎</all>
Design	n defaults								
⊳ Re	inforcement								
⊳ Mi	nimum cover								
Solver	rsetting								
⊿ Ge	neral								
	Limit value of unity check	Lim.check	1.0	1.0			Independent	All (Bea	Solver set
	Value of unity check for not calculated unity check	Ncal.check	3.0	3.0			Independent	All (Bea	Solver set
	The coefficient for calculation effective depth of cross-secti	Coeff _d	0.9	0.9			Independent	All (Bea	Solver set
	The coefficient for calculation inner lever arm	Coeff _z	0.9	0.9			Independent	All (Bea	Solver set
	The coefficient for calculation force, where member as un	Coeff _{com}	0.1	0.1			Independent	All (Bea	Solver set
4	Creep and shrinkage								
	Age of concrete at the moment considered	t	1825.00	18250.00	day	3.1.4.B.1-2	EN 1992-1-1	All (Bea	Solver set
	Relative humidity	RH	50	50	%	3.1.4.B.1-2	EN 1992-1-1		Solver set
	 Type input of creep coefficient 	Type q (t,to)	Auto 🧳	Auto		3.1.4(2)	EN 1992-1-1		Solver set
	Age of concrete at loading		Auto	28.00	day	3.1.4(2),B1	EN 1992-1-1		Solver set
		Type s _{cs} (t,ts)	User value	Auto		3.1.4(6)	EN 1992-1-1	All (Bea	Solver set
	SLS								
	Use effective modulus of concrete					7.1(2)	EN 1992-1-1	All (Bea	Solver set
	Default sway type								
	Sway around y axis	Sway yy	~				Independent	All (Bea	Solver set
	Sway around z axis	Sway zz	~	~			Independent	All (Bea	Solver set
⊳ Int	ternal forces								

3. Calculation of stiffness ratios between each state, short and long term.

It is the ratio of linear stiffness of the concrete component divided by the resultant stiffness taking cracks into account. The calculation of resultant stiffness is based on clause 7.4.3 (3), formula 7.18.

bending stiffness around y-axis (Ely) = $1/[\zeta/(Ely)_{II} + (1-\zeta)/(Ely)_{I}]$ bending stiffness around z-axis (Elz) = $1/[\zeta/(Elz)_{II} + (1-\zeta)/(Elz)_{I}]$ axial stiffness (EA) = $1/[(\zeta/(EA)_{II} + (1-\zeta)/(EA)_{I}]$

In this formula (EI)_I is the linear stiffness, (EI)_{II} is the stiffness of the cracked element (= long term stiffness = $E_{lin} / 1 + \phi$) and ζ is the distribution coefficient.

$$\zeta = 1 - \beta \left(\frac{\sigma_{sr}}{\sigma_s}\right)^2$$

ratio = Stiffness_{lin} / Stiffness_{res}, for example ratio_{uz} = EI_{z,lin} / EI_{z,res}

4. Calculation of deflection components

Several components are needed to calculate the total and additional deflection.

In the following part we will note "s" for short term and "l" for long term.

The components are:
$$\begin{split} &\delta_{lin} \text{ linear (elastic) deflection, } \delta_{lin} = \delta_{lin,s} + \delta_{lin,l} \\ &\delta_{imm} \text{ immediate deflection, } \delta_{imm} = \delta_{lin,l} \cdot \text{ ratios} \\ &\delta_s \text{ short-term deflection, } \delta_s = \delta_{lin,s} \cdot \text{ ratios} \\ &\delta_{l,creep} \text{ long-term deflection + creep, } \delta_{l,creep} = \delta_{lin,l} \cdot \text{ ratiol} \\ &\delta_{creep} \text{ creep deflection, } \delta_{creep} = \delta_{lin,l} \cdot (\text{ ratiol - ratios}) \\ &\delta_l \text{ long-term deflection, } \delta_l = \delta_{l,creep} - \delta_{creep} \\ &\delta_{add} \text{ additional deflection, } \delta_{add} = \delta_s + \delta_{l,creep} - \delta_{imm} \\ &\delta_{tot} \text{ total deflection, } \delta_{tot} = \delta_s + \delta_{l,creep} \end{split}$$

5. Check of deflections

Two deflections are checked:

Total deflection: The appearance and general utility of the structure could be impaired when the calculated sag of a beam, slab or cantilever subjected to quasi-permanent loads exceeds span/250. $\delta_{\text{tot,lim}} = L/250$

Additional deflection: Deflections that could damage adjacent parts of the structure should be limited.

$$\delta_{add,lim} = L / 500$$

L is the buckling length multiplied by a β factor of the member in the corresponding direction.

Final unity check is:

Unity check = max {
$$\frac{\delta \text{tot}}{\delta \text{tot, lim}}$$
 ; $\frac{\delta \text{add}}{\delta \text{add, lim}}$ }

The limits of deflection can be changed in Concrete settings > Complete setup view > Deflections:

_										
	Description	Symbol	Value	Default	Unit	Chapter	Code		CheckTy	
all>		<all> 🔎</all>	<all></all>	<all> 🔎</all>	< P	<all></all>	o <all> ♀</all>	<all> 🔎</all>	<all> ₽</all>	
_	Design defaults									
	Reinforcement									
	> Minimum cover									
	olver setting									
C	General									
¢										
C	> Design As									
p										
¢										
C										
¢										
¢										
	> Cracking forces									
¢	> Crack width									
1	Deflections									
	Coefficient for increasing the amount of reinforcement	Coeff _{reinf}	1.0	1.0			Independent		Solver set	
	Maximal total deflection L/x; x =	×tot	250.0	250.0		7.4.1(4)	EN 1992-1-1		Solver set	
	Maximal additional deflection L/x; x =	Xadd	500.0	500.0		7.4.1(5)	EN 1992-1-1		Solver set	
	Type of variable load coefficient for the automatic generati		Use Psi2 factor	Use Psi2 f			Independent	All (Bea	Solver set	
¢	> Detailing provisions		-							

Example: 'beam_practical reinforcement.esa'

Look at deflection check for the "SLS qp" combination.

Various results can be displayed on the screen: UC, total and additional deflection or limits for total and additional deflection.

Open the Standard output for the UC. At position dx = 2,5m we have the following result:

Basic values of deflections

Type of	Ratio	Ratio	δ _{lin}	δ _{imm}	δadd	δ _{short}	δlong	δlong+creep	δcreep
deflection	short [-]	long [-]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
Uy	2.88	5.22	0	0	0	0	0	0	0
Uz	2.5	3.38	-3.08	-7.7	-2.69	0	-7.7	-10.4	-2.69

Check of additional and total deflections

Type of	L	δ _{add}	δ _{add,lim}	\textbf{UC}_{add}	δ _{tot}	$\boldsymbol{\delta}_{\text{tot,lim}}$	UCtot		Limit	Status
deflection	[m]	[mm]	[mm]	[-]	[mm]	[mm]	[-]	00[-]	[-]	
u _y	10	0	0	0	0	0	0	0	1	ОК
Uz	10	-2.69	-20	0.13	-10.4	-40.1	0.26	0.26	1	ОК

All ratio of stiffnesses and deflection components are resumed in a table.

Open the Detailed output, for the same position dx = 2,5m. All previously mentioned steps for the calculation of the deflections can be found here.

For example for the long-term stiffness, we can obtain the long-term part of the loads and the calculated creep coefficient:

Long-term stiffnesses and curvatures under total load

Settings

Long-term part of applied load = 100% Creep coefficient ϕ = 2.21

Uncracked (state I) and cracked (state II) cross section properties are also shown in a table:

Type of component	t _y [m]	t _z [m]	A [m ²]	l _y [m ⁴]	l _z [m ⁴]	x _i [m]	A _{st} [m ²]	A _{sc} [m ²]	A _s [m ²]		
Linear	0	0	0.15	3.13·10 ⁻³	1.13.10-3	0.25	-	-	-		
Uncracked	0	-0.019	0.193	4.69·10 ⁻³	1.35.10-3	0.27	1.57.10-3	628·10 ⁻⁶	2.2.10-3	3	
Cracked	0	0.053	0.102	2.89·10 ⁻³	667·10 ⁻⁶	0.197	1.57.10-3	628·10 ⁻⁶	2.2.10-3	3	
σ _{ct} = 7.7 Cracking status σ _{ct} > f _c	;		> 2.9 MF	a => Cra	cks appear.						
tress in reinfo σ _{sr} = 99			king loa	d							
$\sigma_{sr} = 99$.3 MPa		2	d							
$\sigma_{sr} = 99$.3 MPa rcemer		2	d							
σ _{sr} = 99 Stress in reinfo σ _s = 263	.3 MPa rcemer 2 MPa	nt for actir	2	d							
$\sigma_{sr} = 99$ Stress in reinfo $\sigma_s = 263$ Distribution co	.3 MPa rcemer 2 MPa efficien	nt for actir t	ng load	d (0;1 - 0.5 ·	$\left(\frac{99.3}{262}\right)^2$	0.928					
$\sigma_{sr} = 99$ stress in reinfo $\sigma_s = 265$ distribution co	.3 MPa rcemer 2 MPa efficien	nt for actir t	ng load		$\left(\frac{99.3}{262}\right)^2 =$	0.928					
Stress in reinfo $\sigma_s = 26$ Distribution co $\zeta = max$.3 MPa rcemer 2 MPa efficien	nt for actir t	ng load		())	0.928	ion σ _{sr}	σ,	β	ζ	E _c

Which allows to calculate the stiffness's ratio, for example the bending stiffness's ratio:

And final the short and long-term ratios:

Then all deflection components are calculated together with the limit deflections:

Deflections

Linear deflection

```
\delta_{lin,y} = u_{ys} + u_{yl} = 0 + 0 = 0 \text{ mm}
```

```
\delta_{\text{lin}z} = u_{zs} + u_{zl} = 0 + -3.08 = -3.08 \text{ mm}
```

Immediate deflection

$$\begin{split} \delta_{imm,y} &= u_{yl} \cdot ratio_{uys} = 0 \cdot 2.88 = 0 \text{ mm} \\ \delta_{imm,z} &= u_{zl} \cdot ratio_{uzs} = -3.08 \cdot 2.5 = -7.7 \text{ mm} \end{split}$$

Short-term deflection

$$\begin{split} \delta_{short,y} &= u_{ys} \cdot ratio_{uys} = 0 \cdot 2.88 = 0 \ mm \\ \delta_{short,z} &= u_{zs} \cdot ratio_{uzs} = 0 \cdot 2.5 = 0 \ mm \end{split}$$

Long-term + creep deflection

$$\begin{split} &\delta_{long,creep,y} = u_{yl} \cdot ratio_{uyl} = 0 \cdot 5.22 = 0 \text{ mm} \\ &\delta_{long,creep,z} = u_{zl} \cdot ratio_{uzl} = -3.08 \cdot 3.38 = -10.4 \text{ mm} \end{split}$$

Creep deflection

```
\begin{split} \delta_{creep,y} &= u_{y1} \cdot \Big( \text{ratio}_{uy1} - \text{ratio}_{uys} \Big) = 0 \cdot \Big( 5.22 - 2.88 \Big) = 0 \text{ mm} \\ \delta_{creep,z} &= u_{z1} \cdot \Big( \text{ratio}_{uz1} - \text{ratio}_{uzs} \Big) = -3.08 \cdot \Big( 3.38 - 2.5 \Big) = -2.69 \text{ mm} \end{split}
```

```
Long-term deflection \delta_{long,y} = \delta_{long,creep,y} - \delta_{creep,y} = 0 - 0 = 0 \text{ mm}
```

```
\delta_{long,z} = \delta_{long,creep,z} - \delta_{creep,z} = -10.4 - -2.69 = -7.7 \text{ mm}
```

Additional deflection

```
\begin{split} \delta_{add,y} = \delta_{short,y} + \delta_{long,creep,y} - \delta_{imm,y} = 0 + 0 - 0 = 0 \ mm \\ \delta_{add,z} = \delta_{short,z} + \delta_{long,creep,z} - \delta_{imm,z} = 0 + -10.4 - -7.7 = -2.69 \ mm \end{split}
```

Limit additional deflection

```
\delta_{add,lim,y} = 0 \text{ mm}
```

 $\delta_{add,lim,z} = \frac{-l_{0z}}{Lim_{add}} = \frac{-10}{500} = -20 \text{ mm}$

Total deflection

$$\begin{split} \delta_{toty} &= \delta_{shorty} + \delta_{long,creep,y} = 0 + 0 = 0 \ mm \\ \delta_{totz} &= \delta_{shortz} + \delta_{long,creepz} = 0 + -10.4 = -10.4 \ mm \end{split}$$

Limit total deflection

$$\begin{split} &\delta_{tot,lim,y}=0\ mm\\ &\delta_{tot,lim,z}=\frac{-I_{0z}}{Lim_{tot}}=\frac{-10}{250}=-40\ mm \end{split}$$

Limitations of the deflection check:

- Deformation caused by shrinkage is not automatically considered.
- Verification based on limiting span / depth ratio according to 7.4.2 is not implemented.
- Calculation of deflection depends on the internal forces used for the reduced stiffness. Therefore, the check of deflection doesn't work for cases where the internal forces are equal to zero but deflections are not zero. Typically, this is the case for a cantilever structure with free overhang.

4 DETAILLING PROVISIONS

Scia Engineer distinguishes three types of member with their detailing provisions:

- Beam verification of longitudinal and shear reinforcement
- Column verification of main and transverse reinforcement
- Beam slab verification of longitudinal reinforcement only

All detailing provisions are taken into account automatically in Concrete settings > Complete setup view > Detailing provisions:

s: Complete setup 👻 View settings 👻 Load defaul	t 📃	Find								National	annex:	
Description	Symbol		Value		Default		Unit	Chapter	Code	Structure	CheckTy	
م ۶	<all></all>	P	<all></all>	P	<all></all>	2	< P	<all></all>	⊃ <all> ♀</all>	all> P	<al> ρ</al>	
Design defaults												
Reinforcement												
Minimum cover												
Solver setting												
General												
Internal forces												
Design As												
Conversion to rebars												
Interaction diagram												
Shear												
Torsion												
Stress limitations												
Cracking forces												
Crack width												
Deflections				_								
Detailing provisions			-	_		_						
Beam / Rib			-	_		_						
Longitudinal			•	_	_	_		(-)				
Check min. bar distance			~	_	~	_		8.2(2)	EN 1992-1-1	Beam,Rib		
Minimal bar distance	^S lb,min		20	_	20	_	mm	8.2(2)	EN 1992-1-1	Beam,Rib		
Check max. bar distance			<u> </u>	_	-	_			Independent	Beam,Rib		
Check max. bar distance (torsion)	-		250	_	-	_		9.2.3(4)	EN 1992-1-1	Beam,Rib		
Maximal bar distance (torsion) Check min, reinforcement area	Sibt, max		350	-	350	_		9.2.3(4) 9.2.1.1(1)	EN 1992-1-1 EN 1992-1-1	Beam,Rib Beam,Rib	Solver set	
				_		-				Beam,Rib	Solver set	
Check min. reinforcement area for secondary memb Check max. reinforcement area				_		_		9.2.1.1(1) 9.2.1.1(3)	EN 1992-1-1 EN 1992-1-1	Beam,Rib Beam.Rib	Solver set	
Stirrups						_		5.2.1.1(3)	CH 1992-1-1	Seam, RD	solver set	
Check min. mandrel diameter						-		8.3(2)	EN 1992-1-1	Beam.Rib	Solver set	
Check max. longitudinal spacing (shear)						-		9.2.2(6)	EN 1992-1-1	Beam,Rib		
Check max. longitudinal spacing (sirear)						-		9.2.3(3)	EN 1992-1-1	Beam,Rib		
Check max. transverse spacing		_		_		-		9.2.2(8)	EN 1992-1-1	Beam,Rib		
Check min. percentage of stirrups		_		_		-		9.2.2(5)	EN 1992-1-1	Beam,Rib		
Check max. percentage of stirrups								6.2.3(3)	EN 1992-1-1	Beam,Rib		
Beam slab		_	-	_	_							
Column												

Following table shows which checks of detailing provisions are performed:

Member type	Longitudinal (main)	Shear (transverse)
Beam	reinforcement 9.2.1.1(3) - Maximal area of longitudinal reinforcement	 6.2.3(3) - Maximal percentage of shear reinforcement 9.2.2(5) - Minimal percentage of shear reinforcement 9.2.2(6) - Maximal longitudinal spacing of stirrups (shear) 9.2.2(8) - Maximal transverse spacing of stirrups (shear) 9.2.3(3) - Maximal longitudinal spacing of stirrups (torsion)
Column	 8.2(2) - Minimal clear spacing of bars 9.5.2(1) - Minimal bar diameter of longitudinal reinforcement 9.5.2(2) - Minimal area of longitudinal reinforcement 9.5.2(3) - Maximal area of longitudinal reinforcement 9.5.2(4) - Minimal number of longitudinal reinforcement bars 	 9.2.3(3) - Maximal longitudinal spacing of stirrups (torsion) 9.5.3(1) - Minimal diameter of transverse reinforcement 9.5.3(3) - Maximal longitudinal spacing of transverse reinforcement
Beam Slab	8.2(2) - Minimal clear spacing of bars 9.3.1.1(3) - Maximal bar distance of longitudinal reinforcement	-

4 SECTION CHECK

The Section check tools can be used in two different ways: with or without practical reinforcement inputted beforehand.

Section check can be launched:

• In the properties window for an individual check

• In the properties window for the Section Check – results service

	INPUT PANEL	All workstations 🗸		i 🖗 😼	
	All categories 🗸	Basic modelling 🗸		RESUL	.TS (1) 🔰
8+	🥩 1D member	Ctrl+B		Name	Section Check - results
B+	Beam Beam			▼ SELECTION	
				Type of selection	All \checkmark
P-				▼ RESULT CASE	
				Type of load	Combinations \checkmark
10				Combination	ULS \lor
				▼ OUTPUT SETTINGS	
A			ſF	Output	Brief \checkmark
N II			F	Print combination key	
# 1			A _X	Print checks per section	
				▼ CHECKS	
		والمراجع والمراجع المراجع والمراجع والمراجع		Capacity-response (ULS)	
				Capacity-diagram (ULS)	
₩			6-	Shear+Torsion (ULS)	
I,			17	Detailing provision	
				ACTIONS >>>>	
a a constant				Refresh	
				Section Check	
11				Preview	
				v	
				=	

⇒ With practical reinforcement

Example 1: 'beam_practical reinforcement SC.esa'

Section check can be opened from all individual checks.

In this example, select Design > Concrete 1D > SLS reinforcement stress limitation check (SLS) and click on "Section check" in the Properties window:

Select the beam and then click on the position for which the check should be done. Choose section 20 at the middle of the beam:

The Section check tool opens:

									Section Check (tool)					
Home														
		Ð	. ,	Ċ				Restruction defa	ore Save Cancel					
	Lo	ingitudinal re	inforcement	t			9	Stirrups	Application					
Section	Info							Report			Ch	eck		
	Grid si	ze: 100 r	nm / 4					Standard Check: Stress limit		Check value: 0.89 🔶	E	Name	Value	Stat
	il ^a	-30	-		16			Extreme : SLS/2 [S	LS]	0.85 👻	1	Internal forces (check)		
		_										Capacity-response (ULS)		
	200				- 320							Capacity-diagram (ULS)		
					10			Section SC1		RECT (500; 300)		Shear+Torsion (ULS)		
			ž					EC EN 1992-1-1:2004/	AC:2008 L = 10 m	Beam S1 [dx = 5 m]		Stress limitation (SLS)	0.89	4
			+ y					Member length: Buckling y-y上	L = 10 m $L_y = 10 \text{ m} (sway)$	Concrete: C30/37 Bi-linear stress-strain diagram		Crack width (SLS)		
								Buckling z-z	$L_z = 10 \text{ m} (\text{sway})$	Exposure class: XC3	E	Deflection (SLS)		
								+		Longitudinal reinforcement: B 500A	E	Detailing provisions		
	-200				-30				5¢20 (1571 mm2)	Bi-linear with an inclined top branch 7¢20 mm (A _s = 2199 mm ²)	Ext	reme		
										$p_1 = 1.466 \% (17.3 \text{ kg/m})$	-	Name	Value	Statu
	-98		40 Å	80 200	æ					Shear reinforcement: B 500A		SLS/2 (SLS)	0.89	4
leinfor	cement (layou	t) Reinforo	ement (free)					+z		Bi-linear with an inclined top branch		SLS/1 (SLS)	0.79	4
Long	itudinal							- 20	t,	ϕ 10/99.7 mm (n _s = 2) (A _{sw} = 157 mm ²)				
	Bar	Y [mm]	Z [mm]	Diameter	Material	Detailing			·	ρ _w = 1.050 % (12.4 kg/m) (A _{swm} = 1575 mn Cover (stirrup)				
				Ø (mm)						Top: 36 mm				
-	BO	90	195	20	8 500A		-		And a second second second	Bottom: 36 mm Left: 36 mm				
-	B1	-90	195	20	B 500A			· · · ·	2¢20 (628 mm2)	Right: 36 mm				
-	B2	-90	-195	20	B 500A			*	φ10/100 mm, ns=2					
	B3	90	-195	20	B 500A			300	4 10/ 100 min, 115-2					
	B4	45	195	20	B 500A									
-	B5	0	195	20	B 500A			•		, ·	4			
-	B6	-45	195	20	B 500A					e		all check status:	0.89	
-					8 500A						Sati		0.89	

This window is composed of 3 mains parts:

- Definition / modification of the reinforcement
- Preview of the report
- Checks to be performed according to the previous selected combinations or load cases. By default, only the individual selected check will be performed. The user can activate more checks if wanted.

When selecting a SLS combination in the Properties windows, only SLS checks will be available. When selecting a ULS combination in the Properties windows, only ULS checks will be available.

In this example, stress limitation in the concrete is not OK. One solution is to redesign the longitudinal reinforcement to satisfy the SLS stress limitations. We could then close the Section check tool and change the practical reinforcement for this beam or we can adapt locally the reinforcement in the studied section (Section 19). We will choose to adapt the reinforcement in the Section check tool itself.

When practical reinforcement was already inputted, it can be edited in the tab "Reinforcement (free)":

-	Section	Info						
		Grid siz	:e: 100 n	nm / 4	,			
			300 -200	-100 0	100 200 8	80		
			20	Ť,		xo 60 -0		
			-350			80		
F	Reinfor	cement (layout		ement (free)	1	*		
F	Reinfor	cement (layout Bar	_			Material	Detailing	•
F	Reinfor) Reinforce	ement (free)	Diameter		Detailing	•
F		Bar) Reinforce Y [mm]	ement (free) Z [mm]	Diameter Ø [mm]	Material		
ſ		Bar B0) Reinforce Y [mm] 90	ement (free) Z [mm] 195	Diameter Ø [mm] 20	Material B 500A		
ſ		Bar B0 B1) Reinforce Y [mm] 90 -90	ement (free) Z [mm] 195 195	Diameter Ø [mm] 20 20	Material B 500A B 500A		
F		Bar B0 B1 B2) Reinforce Y [mm] 90 -90 -90	z [mm] 195 195 -195	Diameter Ø [mm] 20 20 20	Material B 500A B 500A B 500A		
ſ		Bar B0 B1 B2 B3	 Reinforce Y [mm] 90 -90 -90 90 	z [mm] 195 195 -195 -195	Diameter Ø [mm] 20 20 20 20 20	Material B 500A B 500A B 500A B 500A		

Each present bar, position and diameter, is listed in the table. They can be modified, deleted or new bars can be added.

Increase the diameter of top layer bars B0, B1, B4 and B6 from 20mm to 25mm:

Section	Info							Report					Ch	eck		
	Grid si	ze: 100 r	nm /	4				Standard •	Check: Stress limi Extreme : SLS/2 [iLS)	Check value: 0.76 🔶	E	Name	Value	Statu
	đ	-89	-10 0		- <u>5</u>				Extreme : SLS/2 [stsj		0.10		Internal forces (check)		
		Г												Capacity-response (ULS)		
	20		0001	• •	34			C	ection SC	1		BECT (500: 200)		Capacity-diagram (ULS)		
	-				86			10000				RECT (500; 300)		Shear+Torsion (ULS)		
			ž						EN 1992-1-1:2004/	AC:200	8 L = 10 m	Beam S1 [dx = 5 m]	1	Stress limitation (SLS)		76 🖌
			+						mber length: Buckling y-y⊥		L = 10 m L = 10 m (swav)	Concrete: C30/37 Bi-linear stress-strain diagram	0	Crack width (SLS)		
									Buckling z-z		$L_z = 10 \text{ m} (sway)$ $L_z = 10 \text{ m} (sway)$	Exposure class: XC3	0	Deflection (SLS)		
								*	_		7	Longitudinal reinforcement: B 500A		Detailing provisions		
	-80		le		-86						5ф25 (2454 mm2)	Bi-linear with an inclined top branch	Ext	treme		
										- 1	8	2¢20 mm + 5¢25 mm (A _s = 3083 mm ²) p ₁ = 2.055 % (24.2 kg/m)		Name	Value	Statu
				NI 3	u H					- 1		Shear reinforcement: B 500A	+	SLS/2 (SLS)	0.3	76 🥪
_	cement (layou	t) Reinforo	ement (free						t ^z	- 1		Bi-linear with an inclined top branch		SL5/1 (SL5)	0.1	68 🥪
Long	tudinal						1	200	+	-		φ10/99.7 mm (n _s = 2) (A _{sw} = 157 mm ²)		56571 (5657		10
	Bar	Y [mm]	Z (mm)	Diameter Ø (mm)	Material	Detailing				y		ρ _w = 1.050 % (12.4 kg/m) (A _{som} = 1575 mn Cover (stirrup)				
-	BO	90	195	25	B 500A					- 1		Top: 36 mm				
-	B1	-90	195	25	B 500A		-			_	2¢20 (628 mm2)	Bottom: 36 mm Left: 36 mm				
-	B2	-90	-195	20	B 500A					_	2420 (020 mm2)	Right: 36 mm				
.000	B3	90	-195	20	B 500A			T	300	2	\$10/100 mm, ns=2					
-	B4	45	195	25	B 500A	10			* 300		*					
1001	85	0	195	25	B 500A	10										
	B6	-45	195	25	B 500A			4	11	1			4	1		•
45	New			-	B 500A	D	-					e — ¥ — e		rall check status: I sfied	0.7	6 💙
Ready		\$2						X		_			-			

⇒ Without practical reinforcement

Example 2: 'beam_without practical reinforcement SC.esa'

When no practical reinforcement was inputted beforehand, it is possible to run the section check tool in order to check a specific section of a member with a local reinforcement on this specific section.

In the Concrete menu, select "Section check results".

In the properties window, choose the ULS combination to perform all ULS checks:

RESUL	TS (1)
Name	Section Check - results
SELECTION	
Type of selection	All \sim
RESULT CASE	
Type of load	Combinations \lor
Combination	ULS \vee
 OUTPUT SETTINGS 	
Output	Brief \checkmark
Print combination key	
Print checks per section	
CHECKS	-
Capacity-response (ULS)	
Capacity-diagram (ULS)	
Shear+Torsion (ULS)	
Detailing provision	
ACTIONS >>>	
Refresh	
Section Check	
> Preview	

Select Section 9, in the middle of the first span.

All checks are not satisfied, and the overall UC is 3. The value 3 means that the check could not be performed due to an error in the calculation. In this case, it is because there is no reinforcement yet.

We will start by inserting the reinforcement. First choose the reinforcement template:

Then change the diameter of the reinforcement template. For bottom longitudinal bars, change diameter to 20mm in the tab "Reinforcement (layout):

Note that it is also possible to define the shear reinforcement in this window.

The results for all ULS checks are now:

Once the section is reinforced and checks are satisfied, the user can save the design of this section with the option "Save and close":

A label will then be added on the beam:

N			
¥ ₩	SC1	*	
			<u> </u>

It is possible to run the Section check for SLS combination as below:

If required, Section check tool can still be opened to redesign the section to satisfy the SLS checks by clicking on Section check in the Properties window.

2.3. Column design

2.3.1. Reinforcement design methods

For column design, there are 3 types of calculation:

- Axial compression only
- Uniaxial bending
- Biaxial bending

When taking a closer look at the column calculation, 2 different approaches can be distinguished:

- For the 'Axial compression only' and 'Uniaxial bending' calculation, SCIA Engineer uses the same computing heart as for beams.
- For 'Biaxial bending' calculations, SCIA Engineer uses a combination of the computing heart for beams and the so-called interaction formulas.

Furthermore, the uniaxial bending calculation always has as result a 1-directional reinforcement configuration, with the same number of reinforcement bars at parallel sides.

The biaxial bending calculation has as result a 2-directional reinforcement configuration. The number of bars may differ per direction, but is always the same for parallel sides:

The uniaxial bending calculation is a relatively simple calculation type, while the biaxial bending calculation requires an iterative process.

Keep this in mind as the reason why the uniaxial bending calculation will go a lot faster.

DESIGN WITH AXIAL COMPRESSION ONLY

	F		
			Î
			L
_		Ļ	. ↓

\Rightarrow No reinforcement required: $N_{Ed} < N_{Rd}$

Example: 'Axial compression only.esa'

Studied column: B1

Geometry

Column cross-section: RECT 350x350 mm² Height: 4,5 m Concrete grade: C45/55

Concrete Setup

Item Concrete settings > Internal forces ULS: 'eccentricities' are not taken in account.

Concrete se	ettings											×
/iews: Inte	ternal forces 👻 View settings 💌 Load de	fault	F	Find					Nationa	al annex:	$\langle 0 \rangle$	
Descri	iption	Symbol		Value	Default	Unit	Chapter	Code	Structu	CheckT	🛛	
<all></all>	2	<all></all>	ρ	<all></all>	<all> 🔎</all>	<	<all> 🔎</all>	<all> 🔎</all>	<all> 🔎</all>	Interna	×	
▲ Solver	rsetting											
⊿ Int	ternal forces											
	Shear force reduction above supports						6.2.1(8)	EN 1992-1-1	Beam,B	Solver s	e	
	Moment reduction above supports						5.3.2.2 (4)	EN 1992-1-1	Beam,B	Solver s	e	
	Shifting of moment curve to cover additional tensile forc.				~		9.2.1.3(2)	EN 1992-1-1	Beam,Ri	Solver s	e	
	Geometric imperfection in ULS	ei,ULS			~		5.2(2)	EN 1992-1-1	Column	Solver s	e	
	Geometric imperfection in SLS	ei,SLS					5.2(3)	EN 1992-1-1	Column	Solver s	e	
	Minimum eccentricity	e _{min}		In first order	In first or		6.1(4)	EN 1992-1-1	Column	Solver s	e	
×.	First order eccentricity with the equivalent moment				 Image: A set of the set of the		5.8.8.2(2)	EN 1992-1-1	Column	Solver s	e	3
	Second order eccentricity	e ₂					5.8.8	EN 1992-1-1	Column	Solver s	e	
	Internal forces modifications											
	Limit ratio for uniaxial method	Plim		0.10	0.10	-		Independent	1D (Bea	Solver s	e	
	⊳ Beam											
	4 Column											

The Detailing provisions are not taken in account, in order to view the pure results (according to the Eurocode, always a minimum reinforcement percentage must be added).

NS:	Con	nplete	setup 👻 View settings 💌 Load de	fault		Find					Nationa	l annex: 🔣
De	scrip	otion		Symb	ol	Value	Default	Unit	Chapter	Code	Structu	CheckT
all>			2	⊂all>	P	<all></all>	o <all> ₽</all>	<	<all> \wp</all>	<all></all>	<all> 🔎</all>	<all></all>
· ·		CKWI										
		lectio										
1		-	; provisions			•						
			n / Rib			8						
	⊳	Beam	n slab			-						
	4	Colur	Column			-						
		⊿ Lo	ongitudinal			-						
			Check min. bar distance						8.2(2)	EN 1992-1-1	Column	Solver se
			Check max. bar distance							Independent	Column	Solver se
			Check max. bar distance (torsion)						9.2.3(4)	EN 1992-1-1	Column	Solver se
			Check min. reinforcement area				Image: A start and a start		9.5.2(2)	EN 1992-1-1	Column	Solver se
			Check max. reinforcement area						9.5.2(3)	EN 1992-1-1	Column	Solver se
			Check min. bar diameter						9.5.2(1)	EN 1992-1-1	Column	Solver se
			Check min. number of bars						9.5.2(4)	EN 1992-1-1	Column	Solver se
		4 Tr	ansverse									
			Check max. percentage of stirrups						6.2.3(3)	EN 1992-1-1	Column	Solver se
			Check min. mandrel diameter						8.3(2)	EN 1992-1-1	Column	Solver se
			Check max. longitudinal spacing	-					9.5.3(3)	EN 1992-1-1	Column	Solver se
			Check min. bar diameter						9.5.3(1)	EN 1992-1-1	Column	Solver se

Loads

LC1: Permanent load > F = 1100kN LC2: Variable load > F = 1000kN This means the column is loaded with a single compression force.

Bar diameter

The bar diameter is taken from the Concrete Settings > Complete setup View, or from 1D member data if applied (1D member data always overwrite the Concrete Settings data, for the specific member they are assigned to).

ews: Co	Complete setup 👻 View settings 👻 Load	default	Find					Nationa	il annex: [)
Descr	ription	Symbol	Value	Default	Unit	Chapter	Code	Structu	CheckT
all>		₽ <all> ₽</all>	<all></all>	<all> 🔎</all>	<,D	<all> 🔎</all>	<all> 🔎</all>	<all> ₽</all>	<all> 🔎</all>
A Desig	gn defaults								
⊿ Re	Reinforcement								
Þ	Beam / Rib								
⊳	> Beam slab								
4	Column								
- I.	Design of provided reinforcement			~			Independent	Column	Design d
	Rectangular section		Column	Column			Independent	Column	Design d
	Circular		Column	Column			Independent	Column	Design d
- I.	Oval		Column	Column			Independent	Column	Design d
	Other and general		Column	Column			Independent	Column	Design d
	 Longitudinal 								
	 Main (m) 								
	Type of cover		Auto	Auto		4.4.1	EN 1992-1-1	Column	Design d
	Diameter	d _{s,m}	16.0	16.0	mm		EN 1992-1-1	Column	Design d
	Detailing (det)								
	 Stirrups (sw) 								
	Diameter	d _{ss}	8.0	8.0	mm		EN 1992-1-1	Column	Design d
	Number of cuts	ns	2.0	2.0			Independent	Column	Design d

By default, the diameter for the main column reinforcement is put to ϕ 16mm. Based on this diameter and the exposure class (by default XC3), the concrete cover is calculated. This information is necessary to be able to calculate the lever arm of the reinforcement bars.

Note: To change the default diameter from ϕ 16mm to ϕ 20mm for example, edit the template "Column_Rect_Empty" (or the corresponding empty template for the specific columns shape), and change the value of the diameter to be taken into account (additional provided reinforcement).

Results

Go to Steel workstation > 1D Reinforcement design :

Ask the value of As reg for member B1, and click the action button [Refresh].

লি	
RESUL	TS (1)
Name	Overall Design (ULS)
▼ SELECTION	
Type of selection	Current \checkmark
Filter	No \vee
Results in sections	All \checkmark
▼ RESULT CASE	
Type of load	Combinations \checkmark
Combination	ULS \vee
▼ EXTREME 1D	
Extreme 1D	Global \lor
Type of values	Required \vee
Values	As,req \vee
Interval	\bigcirc
▼ OUTPUT SETTINGS	
Output	Brief \checkmark
DRAWING SETUP 1D	
► ERRORS, WARNINGS AND NOTES S	SETTINGS
Run using Model Data files (Debug)	\bigcirc
ACTIONS >>>>	
🔊 Refresh	
S Edit provided reinforcement terr	iplate
S Concrete setup	
> Preview	

The graph appears to be null on the screen. The Brief output (Preview button), gives As,req = 0.

Linear cal Combinat Coordina Extreme Selection L ongitue	tion: CO te systen 1D: Glob : All	1 n: Princip Dal	oal einforceme	ent							
Name	dx [m]	Case	Member	Asz_req+ [mm ²] Asz_req_bar+ [mm ²]	A _{sz_req} - [mm ²] A _{sz_req_bar} - [mm ²]	Asy_req+ [mm ²] Asy_req_bar+ [mm ²]	A _{sy_req} - [mm ²] A _{sy_req_bar-} [mm ²]	Asz_req [mm ²] Asz_req_bar [mm ²]	Asy_req [mm ²] Asy_req_bar [mm ²]	As_req [mm ²] As_req_bar [mm ²]	ReinfReq
B1	0,000	CO1	Column	0	0	0	0	0	0	0 0	
Shear re	einforce	ment		•		·	·				
Name	dx [m]	Case	Member	A _{swm_req} [mm²/m]	A _{swm_prov} [mm²/m]	ShearReinf					
B1	0,000	CO1	Column	0	0						

If you set output settings on Detailed, you can see the explanation that reinforcement is not necessary.

向	
RESUL	TS (1)
Name	Overall Design (ULS)
▼ SELECTION	
Type of selection	Current \checkmark
Filter	No 🗸
Results in sections	All \checkmark
▼ RESULT CASE	
Type of load	Combinations \checkmark
Combination	ULS \vee
▼ EXTREME 1D	
Extreme 1D	Global \lor
Type of values	Required \lor
Values	As,req \vee
Interval	\bigcirc
▼ OUTPUT SETTINGS	
Output	Detailed \vee
DRAWING SETUP 1D	
ERRORS, WARNINGS AND NOTES S	SETTINGS
Run using Model Data files (Debug)	\bigcirc
ACTIONS >>>>	
Refresh	
S Edit provided reinforcement tem	plate
Oncrete setup	
Preview	

lanatior	n errors/	warnings and notes	
Index	Туре	Description	Solution
N1/1	Note	Statically required reinforcement: The reinforcement is not neccessary.	
		Shear design: Design is not done because	

<u>Remark</u> : this result is obtained only because **all detailing provisions are deactivated** in the Concrete Settings !

Check of reinforcement

 $N_{Rd} = f_{cd} \cdot \alpha \cdot A_c = 30 * 1 * 350^2 / 1000 = 3675 kN$

Since N_{Rd} = 3675kN > N_{Ed} = 2985kN, indeed no theoretical reinforcement is required.

 \Rightarrow Reinforcement required: $N_{Ed} > N_{Rd}$

Example: 'Axial compression only.esa'

Studied column: B2

For this example, the same configuration as above is used, only the permanent point load is increased to 2000kN.

Loads

LC1: Permanent load > F = 2000kN LC2: Variable load > F = 1000kN Combination according to the Eurocode: ULS Combination = 1,35 * LC1 + 1,50 * LC2 Design normal force N_{Ed} = 1,35 * 2000 + 1,50 * 1000 = 4200kN

Results

Remark that SCIA Engineer shows on the screen the reinforcement per direction. The total reinforcement area is in fact 750 + 750 = 1500 mm².

Linear ca											
Combina											
Coordina Extreme			Jdl								
Selection											
Longitu	dinal re	quired r	einforceme	ent							
Name	dx [m]	Case	Member	A _{sz_req+} [mm²]	A _{sz_req} . [mm²]	A _{sy_req+} [mm²]	A _{sy_req-} [mm²]	A _{sz_req} [mm²]	A _{sy_req} [mm²]	A _{s_req} [mm²]	ReinfReq
				Asz_req_bar+ [mm ²]	Asz_req_bar- [mm²]	Asy_req_bar+ [mm ²]	Asy_req_bar- [mm ²]	Asz_req_bar [mm ²]	Asy_req_bar [mm²]	As_req_bar [mm²]	
B2	0.000	ULS	Column	375	375	375	375	750	750		[z]6 φ16 ,
				402	402	402	402	804	804	1608	[y]6 φ16
l											
Shear re	einforce	ment									
Shear ro			Mombor		•	ChoorDoinf					
Shear ro Name	einforce dx [m]	ment Case	Member	A _{swm_req} [mm²/m]	Aswm_prov [mm²/m]	ShearReinf					

When asking for the Standard output for Reinforcement design, the proposed configuration can be found:

3 4

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	ear calcu mbination ordinate treme 1D ection: A	n: CO1 system: Pr v: Global	incipal								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Col	umn	B1				Red	tangle	(350; 3	50)	
Note that the part of the	EC EN	992-1-1:2	2004/AC:2	008				_		-	
Buckling length zLz = 9.01 mReinforcementB 500BLongitudinal reinforcement $\phi = 16$ mm, c = 30 mm,Shear reinforcement n _{sreq} = 2, $\phi_{sreq} = 8$ mm, $\alpha_{sreq} = 90$ esign of longitudinal reinforcement A _s ⁱ 1.35*LC1+1.50*LC2 : N _{Ed} = -4200 kN, M _{Edy} = 0 kNm, M _{Edz} = 0 kNmShear reinforcement n _{sreq} = 2, $\phi_{sreq} = 8$ mm, $\alpha_{sreq} = 90$ equiredyzA _s statt [m]A _s det min [mm ²]A _s det max [mm ²]AA _{s.tor} [mm ²]A _{s.req} [mm ²]A _{s.req} bar [mm ²]Reinf (mm ²)110-0.1293750003754023\$16	Mem	ber length		Ld =	4.5 m		Ma	terials			
Buckling length zLz = 9.01 mReinforcementB 500BLongitudinal reinforcement $\phi = 16$ mm, c = 30 mm,Shear reinforcement n _{sreq} = 2, $\phi_{sreq} = 8$ mm, $\alpha_{sreq} = 90$ esign of longitudinal reinforcement A _s ⁱ 1.35*LC1+1.50*LC2 : N _{Ed} = -4200 kN, M _{Edy} = 0 kNm, M _{Edz} = 0 kNmShear reinforcement n _{sreq} = 2, $\phi_{sreq} = 8$ mm, $\alpha_{sreq} = 90$ equiredyzA _s statt [m]A _s det min [mm ²]A _s det max [mm ²]AA _{s.tor} [mm ²]A _{s.req} [mm ²]A _{s.req} bar [mm ²]Reinf (mm ²)110-0.1293750003754023\$16	Buck	ling length	y	Ly =	9.01 m		Con	crete	C45	/55	
$\varphi = 16 \text{ mm}, \text{ c} = 30 \text{ mm}, $ $n_{sreq} = 2, \varphi_{sreq} = 8 \text{ mm}, \alpha_{sreq} = 90$ esign of longitudinal reinforcement $A_{s}^{\circ} 1.35^{\circ}LC1 + 1.50^{\circ}LC2 : N_{Ed} = -4200 \text{ kN}, M_{Edy} = 0 \text{ kNm}, M_{Edz} = 0 \text{ kNm}$ equired $\boxed{Edge Layer y z A_{s.stat} A_{s.det.min} A_{s.det.max} \Delta A_{s.tor} A_{s.req} A_{s.req} B_{s.req} B_{s.req$	Buck	ling length	z	Lz =	9.01 m		Rein	forcement	B 50	00B	
Edge Layer y z A _s .det.min A _{s.det.max} A _{s.teq} A _{s.req} bar I 1 0 0 0 A _{s.stat} A _{s.det.max} A _{s.steq} A _{s.req} bar Reinf 1 0 0 0 0 0 A _{s.steq} A _{s.req} bar Reinf 1 1 0 -0.129 375 0 0 375 402 3\$416	Longi	tudinal r	einforce	ment					Shear	reinfor	cement
A _s : 1.35*LC1+1.50*LC2 : N _{Ed} = -4200 kN, M _{Edy} = 0 kNm, M _{Edx} = 0 kNm equired Edge Layer y z A _s :stat A _{s.det.min} A _{s.det.max} $\Delta A_{s.tor}$ A _{s.req} A _{s.req, bar} Reinf 1 1 0 -0.129 375 0 0 375 402 3φ16	φ = '	l6 mm, c =	: 30 mm,						n _{s.rec}	, = 2, φ _{s.req}	= 8 mm, $\alpha_{s,reg}$ = 90 °
Code Layer [m] [mm ²] [mm ²] <th[mm<sup>2] <th[mm<sup>2]<!--</th--><th>A_s: 1.35</th><th>*LC1+1.50</th><th>*LC2 : N_{Ed}</th><th>= -4200 k</th><th>N, M_{Edy} =</th><th></th><th></th><th></th><th>Α</th><th>Α</th><th></th></th[mm<sup></th[mm<sup>	A _s : 1.35	*LC1+1.50	*LC2 : N _{Ed}	= -4200 k	N, M _{Edy} =				Α	Α	
	Edge	Layer	-								Reinf
2 1 0.129 0 375 0 0 0 375 402 3¢16	1	1	0	-0.129	375	0	0	0		402	3ф16
	-	1	0.120	0	375	0	0	0	375	402	3616
	3	1	0	0.129	375	0	0	0	375	402	3¢16

Explanation of the number of reinforcement bars

-0.129 0

375

0

0

0

375

402

3**φ**16

Default bar diameter has been set to $\phi 16$ in Design default. The table indicates that each edge needs $3\phi 16$. On the final picture, this leads to a total of $8\phi 16$ in the section of the column.

4 DESIGN WITH BENDING MOMENT AND AXIAL FORCE

Four calculation methods are available in SCIA Engineer in concrete settings > Design As > Beam, Column, Rib, ... > Design method:

- Auto (by default)
- Uniaxial around y axis
- Uniaxial around z axis
- Biaxial (always used for circular and oval columns)

ews: Cor	mpl	ete	setup 💌 View settings 👻 Load default 🛛 Fin	ł					1	National a	nnex [
Descri	ptic	n		Symbol	Value	Default	Unit	Chapter	Code	Struc	Check	
all>			Q	<all> \wp</all>	<all> \wp</all>	<all> ></all>	C	<all> D</all>	<all> \wp</all>	<a td="" 🔎<=""><td><a td="" 🔎<=""><td></td></td>	<a td="" 🔎<=""><td></td>	
	Fir	st o	der eccentricity with the equivalent moment					5.8.8.2(2)	EN 1992	Column	Solver	
	Se	con	d order eccentricity	e ₂				5.8.8	EN 1992	Column	Solver	
	Int	err	al forces modifications	_								
		Lir	nit ratio for uniaxial method	Plim	0.10	0.10	-		Independ	1D (Be	Solver	
	⊳	Be	am									
	4	Сс	lumn									
	▶ Туре				Auto 🔺	Auto			Independ	Column	Solver	
	L		Axial force (N _{Ed})	N _{Ed}	Auto				Independ	Column	Solver	
	L		Bending moment about Y-axis (M _{Edy})	M _{Edy}	Uniaxial Y-Y Uniaxial Z-Z				Independ	Column	Solver	>
	L		Bending moment about Z-axis (M _{Edz})	M _{Edz}	Biaxial				Independ	Column	Solver	
	L		Torsional moment (T _{Ed})	T _{Ed}	User				Independ	Column	Solver	
			Shear force in Y-axis (V _{Edy})	V _{Edy}	User with lin	nit			Independ			
			Shear force in Z-axis (V _{Edz})	V _{Edz}					Independ	Column	Solver	
	Þ	Be	am slab									
⊿ De	sig	n As										
	Be	am	Column, Rib, Beam Slab									
			efficient increasing statically required reinforcement in beam for u		0.00	0.00			Independ			
		Co	efficient increasing statically required reinforcement in beam for lo	Coeff _{stat.lo}	0.00	0.00			Independ	Beam,	Solver	
		Co	afficient increasing statically required reinforcement in column	Coeff	0.00	0.00			Independ	Calumn	Salver	

The "Auto" selection of the design method is based on the limit ratio of bending moment for the uniaxial method. The program will automatically select the uniaxial or biaxial method depending on the values of bending moments around y and z axis.

Rule for automatic selection of the design method:

- If $\rho_M \le \rho_{M,lim}$ Uniaxial method
 - If $\rho_M \ge \rho_{M,lim}$ Biaxial method

$$\rho_{M} = \frac{\text{Min}\{|\text{MEd}_{y,\text{max}}|,|\text{MEd}_{z,\text{max}}|\}}{\text{Max}\{|\text{MEd}_{y,\text{max}}|,|\text{MEd}_{z,\text{max}}|\}}$$

With:

MEdy.maxmaximal design moment around y axis from all combinations in current sectionMEdz.maxmaximal design moment around z axis from all combinations in current sectionρM,limlimit ratio of bending moments for uniaxial method loaded from Concrete settings

Settings for limit ratio:

ews: _	Compl	ete setup	*	View settings 🔻	Load default	Fin	d							1	National a	innex 😽	2
Des	criptio	n					Symbo	ol	Value	D	efault	Unit	Chapter	Code	Struc	Check	Ľ.
<all></all>						Q	<all></all>	P	<all></all>	Q <	all> 🔎		<all> \wp</all>	<all> \wp</all>	<a <math="">\wp	<a th="" 🔎<=""><th>н.</th>	н.
Solv	/er set	ting															
▶ (Genera	al															
- A 1	Intern	al forces															
	Sh	ear force re	duction above	e supports									6.2.1(8)	EN 1992	Beam,	Solver	
	Мо	ment reduc	tion above su	ipports									5.3.2.2 (4)	EN 1992	Beam,	Solver	
	Shi	fting of mo	nent curve to	o cover additional t	ensile force caused	by shear							9.2.1.3(2)	EN 1992	Beam,	Solver	
	Ge	ometric imp	erfection in U	JLS			ei,ULS		~				5.2(2)	EN 1992	Column	Solver	
	Ge	ometric imp	erfection in S	SLS			e _{i,SLS}						5.2(3)	EN 1992	Column	Solver	
	Mir	imum ecce	ntricity				e _{min}		In first or	d In	first		6.1(4)	EN 1992	Column	Solver	
	First	st order ecc	entricity with	the equivalent mor	ment				~	 ✓ 	J		5.8.8.2(2)	EN 1992	Column	Solver	
	See	ond order (eccentricity				e ₂		~				5.8.8	EN 1992	Column	Solver	
	⊿ Int	ernal force	s modificatio	ons													
		Limit ratio	for uniaxial n	nethod			Plim		0.10	0.	10			Independ	1D (Be	Solver	
	⊳	Beam															
		Column															
		▶ Туре							Auto	Au	uto			Independ	Column	Solver	
		Axial	force (N _{Ed})				N _{Ed}							Independ	Column	Solver	
		Bend	ng moment a	about Y-axis (M _{Edy})			M _{Edy}		~					Independ			
		Rend	na moment :	about 7-avis (M)			M		•••					Independ	Column	Salver	

⇒ Uniaxial bending calculation

Principle

The reinforcement is designed for NEd and one bending moment MEd,y or MEd,z:

- Uniaxial around y: MEdz is ignored, the reinforcement is designed only for NEd and MEd,y
- Uniaxial around z: MEdy is ignored, the reinforcement is designed only for NEd and MEd,z

If Auto selection of design method is selected and $p_M \le p_{M,lim}$, the rule to choose between uniaxial method around y or z is:

- If M_{Ed,y} > M_{Ed,z} → A_s = A_{sy} is designed for forces N_{Ed} and M_{Ed,y}
- If M_{Ed,z} > M_{Ed,y} → A_s = A_{sz} is designed for forces N_{Ed} and M_{Ed,z}

Example: open the example 'Uniaxial bending.esa'

Geometry

Column cross-section: RECT 350x350mm² Height: 4,5 m Concrete grade: C45/55

Concrete Setup

Item Concrete settings > Internal forces ULS: 'eccentricities' are not taken in account (only 1st order moments are considered).

ews:	Com	nplete setup 👻 View settings 👻 Load default 🛛 Find	±					1	National a	nnex: 🚺	
Des	crip	tion	Symbol	Value	Default	Unit	Chapter	Code	Struc	Check	1
all>		Q	<all></all>	<all> \wp</all>	<all> \wp</all>		<all> \wp</all>	<all> \wp</all>	<a th="" 🔎<=""><th><a th="" 🔎<=""><th></th></th>	<a th="" 🔎<=""><th></th>	
Des	ign	defaults									
⊳	Rei	nforcement									
⊳	Min	imum cover									
Sol	ver	setting									
⊳	Gen	eral									
	Inte	rnal forces									
		Shear force reduction above supports					6.2.1(8)	EN 1992	Beam,	Solver	
		Moment reduction above supports					5.3.2.2 (4)	EN 1992	Beam,	Solver	
		Shifting of moment curve to cover additional tensile force caused by shear					9.2.1.3(2)	EN 1992	Beam,	Solver	
		Geometric imperfection in ULS	ei,ULS				5.2(2)	EN 1992	Column	Solver	
		Geometric imperfection in SLS	ei,SLS				5.2(3)	EN 1992	Column	Solver	
		Minimum eccentricity	e _{min}	In first ord.	In first		6.1(4)	EN 1992	Column	Solver	
		First order eccentricity with the equivalent moment		~			5.8.8.2(2)	EN 1992	Column	Solver	
	•	Second order eccentricity	e ₂				5.8.8	EN 1992	Column	Solver	
	4	Internal forces modifications									
		Limit ratio for uniaxial method	Plim	0.10	0.10			Independ	1D (Be	Solver	
		▶ Beam									Ľ
		4 Column									

Item Detailing provisions are not taken in account, to view the pure results (according to the Eurocode, always a minimum reinforcement percentage must be added).

s: _	Con	nplete	e setup 👻 View settings 👻 Load de	fault		Find						Nation	al annex: 🔣	2
Des	crip	otion		Symbol	l	Value	Det	fault	Unit	Chapter	Code	Structu	CheckT	Ľ.
>			کر	<all></all>	ρ	<all></all>) <al< th=""><th>⊳ µ</th><th><</th><th><all></all></th><th>all></th><th><all> 🔎</all></th><th><all> 🔎</all></th><th></th></al<>	⊳ µ	<	<all></all>	all>	<all> 🔎</all>	<all> 🔎</all>	
· _		CKWI		_										
· .		lectio												
			g provisions			-								
			n / Rib			-								
	· .		n slab			-								
	۰.	Colui				-								
		▲ <u>L</u>	ongitudinal		_	-								
			Check min. bar distance							8.2(2)	EN 1992-1-1	Column	Solver se	
			Check max. bar distance								Independent	Column	Solver se	
			Check max. bar distance (torsion)							9.2.3(4)	EN 1992-1-1	Column	Solver se	
			Check min. reinforcement area							9.5.2(2)	EN 1992-1-1	Column	Solver se	
			Check max. reinforcement area							9.5.2(3)	EN 1992-1-1	Column	Solver se	
			Check min. bar diameter							9.5.2(1)	EN 1992-1-1	Column	Solver se	
			Check min. number of bars				~			9.5.2(4)	EN 1992-1-1	Column	Solver se	
		a Ti	ransverse			-								
			Check max. percentage of stirrups							6.2.3(3)	EN 1992-1-1	Column	Solver se	
			Check min. mandrel diameter							8.3(2)	EN 1992-1-1	Column	Solver se	
			Check max. longitudinal spacing							9.5.3(3)	EN 1992-1-1	Column	Solver se	
			Check min. bar diameter							9.5.3(1)	EN 1992-1-1	Column	Solver se	

Loads

Column B1: LC1: Permanent load > F = 500kN; M_y = 100kNm LC2: Variable load > F = 1000kN; M_y = 100kNm

Column B2: LC1: Permanent load > F = 500kN; M_y = 100kNm LC2: Variable load > F = 1000kN; M_y = 100kNm; M_z = 10kNm

Combination according to the Eurocode:

ULS Combination = 1,35 * LC1 + 1,50 * LC2Design normal force N_{Ed} = 1,35 * 500 + 1,50 * 1000 = 2175kN Design moment M_{yd} = 1,35 * 100 + 1,50 * 100 = 285kNm Additional design moment in column B2 M_{zd} = 22,5kNm

Results

Go to Reinforcement design > 1D members > Reinforcement design, ask the value for $A_{s,req}$, and click the action buttons [Refresh] and [Preview].

Looking at the Detailed output for column B1:

 $\begin{array}{l} \textbf{Determination type of calculation}\\ \textbf{Calculation maximum bending moments around y and z axis}\\ \textbf{M}_{y,max} = -285 \text{ kNm } \textbf{M}_{z,max} = 0 \text{ kNm}\\ \textbf{Calculation maximum ratio of bending moments}\\ \textbf{p}_{M} = 0\\ \textbf{Determination type of calculation}\\ \textbf{p}_{M} = 0 < \textbf{p}_{M,lim} = 0.1 \text{ and } |\textbf{M}_{y,max}| = 285 \text{ kNm} > |\textbf{M}_{z,max}| = 0 \text{ kNm} =>\\ = > \text{Uniaxial method around y axis. Moment M}_{z} \text{ will not take into account (M}_{z} = 0 \text{ kNm}. \end{array}$

The numerical results of the calculation are as follows (standard output):

Column B1		RECT (350; 350)					
EC EN 1992-1-1:2004/AC	:2008	Section 0 [dx = 0	m]				
Member length	Ld = 4.5 m	Materials					
Buckling length y	Ly = 9.01 m	Concrete	C45/55				
Buckling length z	Lz = 9.01 m	Reinforcement	B 500A				

φ = 16 mm, c = 30 mm,

 $n_{s,req}$ = 2, $\phi_{s,req}$ = 8 mm, $\alpha_{s,req}$ = 90 °

Design of longitudinal reinforcement

$$\begin{split} A_{s.z.}; \ 1.35^{*}LC1 + 1.50^{*}LC2 : N_{Ed} = -2175 \ kN, \ M_{Edy} = -285 \ kNm, \ M_{Edz} = 0 \ kNm \\ A_{s.z.}; \ 1.35^{*}LC1 + 1.50^{*}LC2 : N_{Ed} = -2175 \ kN, \ M_{Edy} = -285 \ kNm, \ M_{Edz} = 0 \ kNm \end{split}$$

Required

Edge	Layer	y [m]	z [m]	A _{s.stat} [mm ²]	A _{s.det.min} [mm ²]	A _{s.det.max} [mm ²]	ΔA _{s.tor} [mm ²]	A _{s.req} [mm ²]	A _{s.req.bar} [mm ²]	Reinf
1	1	0	-0.129	1552	0	0	0	1552	1608	8 ф 16
3	1	0	0.129	1552	0	0	0	1552	1608	8ф16

Looking at the Detailed output for column B2:

Determination type of calculation
Calculation maximum bending moments around y and z axis
M _{y.max} = -285 kNm M _{z.max} = -22.5 kNm
Calculation maximum ratio of bending moments
рм = 0.0789
Determination type of calculation
ρ_M = 0.0789 < $\rho_{M,lim}$ = 0.1 and $ M_{y,max} $ = 285 kNm > M _{z,max} = 22.5 kNm =>
= > Uniaxial method around y axis. Moment M_z will not take into account (M_z = 0 kNm).

And the Standard output:

Column B2		RECT (350; 35	50)
EC EN 1992-1-1:2004/AC:	2008	Section 0 [dx = 0 r	m]
Member length	Ld = 4.5 m	Materials	
Buckling length y	Ly = 9.01 m	Concrete	C45/55
Buckling length z	Lz = 9.01 m	Reinforcement	B 500A
ongitudinal reinfor	cement	s	ihear reinforcement
φ = 16 mm, c = 30 mm,			$n_{s,reg} = 2, \varphi_{s,reg} = 8 \text{ mm}, \alpha_{s,reg} = 90^{\circ}$

Design of longitudinal reinforcement

 $\begin{array}{l} A_{s,z+}\colon 1.35^{s}LC1+1.50^{s}LC2: N_{Ed}=-2175 \ \text{kN}, \ M_{Edy}=-285 \ \text{kNm}, \ M_{Edz}=0 \ \text{kNm} \\ A_{s,z}\colon 1.35^{s}LC1+1.50^{s}LC2: N_{Ed}=-2175 \ \text{kN}, \ M_{Edy}=-285 \ \text{kNm}, \ M_{Edz}=0 \ \text{kNm} \end{array}$

Required

Edge	Layer	y [m]	z [m]	A _{s.stat} [mm ²]	A _{s.det.min} [mm ²]	A _{s.det.max} [mm ²]	ΔA _{s.tor} [mm ²]	A _{s.req} [mm ²]	A _{s.req.bar} [mm ²]	Reinf
1	1	0	-0.129	1552	0	0	0	1552	1608	8 ф 16
3	1	0	0.129	1552	0	0	0	1552	1608	8φ16

Summary of r	einforceme	nt		
Top:		$A_{sz,req+} = 1552 \text{ mm}^2$	$A_{sz,prov+} = 0 mm^2$	
Bottom :		A _{sz.reg} . = 1552 mm ²	$A_{sz,prov} = 0 \text{ mm}^2$	
Right :		$A_{sy.req+} = 0 \text{ mm}^2$	$A_{sy,prov+} = 0 \text{ mm}^2$	
Left :		$A_{sy.req} = 0 \text{ mm}^2$	$A_{sy.prov} = 0 \text{ mm}^2$	
Total vertical:		$A_{sz,req} = 3104 \text{ mm}^2$	$A_{sz,prov} = 0 \text{ mm}^2$	
Total horizonta	l:	$A_{sy.req} = 0 \text{ mm}^2$	$A_{sy,prov} = 0 \text{ mm}^2$	
Total :		$A_{s,req} = 3104 \text{ mm}^2$	$A_{s,prov} = 0 \text{ mm}^2$	
Required bar	s	Provide	ed bars	
v	3	V	3	
350	t ^z y	2 350 4	↓ ^z y	2
<u>↓</u>	۱ 350		۱ 350	

Even if an additional bending moment in the z direction is present in column B2, according to the limit ratio the uniaxial method was used, and the same amount of reinforcement is required for columns B1 and B2.

The user has the possibility to force the biaxial method design on column B2 using 1D member data in Concrete menu > Concrete 1D data:

	н —	CONCR	ETE 1	D DAT	A			
	t		P					
F) ^{C-}	ø					
牌	R		Ê		6	T	1	r
) [n						

CMD		
	Name CMD1D	
	ember B4	
Membe	er type Column	~
Design defaults	20	
Solver setting		
General		
Internal forces		
Isolated me	ember 🔽	
Geometric imperfection i	in ULS 🔽	
Geometric imperfection	in SLS	
Minimum eccen	ntricity In first order ecc.	~
Second order eccen	ntricity 🔽	
Internal forces modifications		
4 Column		
- Column		
	Type Biaxial	~
Axial force (N _{Ed})	Type Biaxial	۷
	Type Blaxial	~
Axial force (N _{Ed})		¥
Axial force (N _{Ed}) Bending moment about Y-axis (M _{Edy})		~
Axial force (N _{Ed}) Bending moment about Y-axis (M _{Edy}) Bending moment about Z-axis (M _{Edz})		*
Axial force (N _{Ed}) Bending moment about Y-axis (M _{Edy}) Bending moment about Z-axis (M _{Edy}) Torsional moment (T _{Ed})		~
Axial force (N _{Ed}) Bending moment about Y-axis (M _{Edy}) Bending moment about Z-axis (M _{Edz}) Torsional moment (T _{Ed}) Shear force in Y-axis (V _{Edy})		×
$ Axial force (N_{Ed}) \\ Bending moment about Y-axis (M_{Edy}) \\ Bending moment about Z-axis (M_{Edz}) \\ Torsional moment (T_{Ed}) \\ Shear force in Y-axis (V_{Edy}) \\ Shear force in Z-axis (V_{Edz}) $		×
Axial force (N _{Ed}) Bending moment about Y-axis (M _{Edy}) Bending moment about Z-axis (M _{Edz}) Torsional moment (T _{Ed}) Shear force in Y-axis (V _{Edy}) Shear force in Z-axis (V _{Edz}) P Design As		×
Axial force (N _{Ed}) Bending moment about Y-axis (M _{Edy}) Bending moment about Z-axis (M _{Edz}) Torsional moment (T _{Ed}) Shear force in Y-axis (V _{Edy}) Shear force in Z-axis (V _{Edz}) Design As Conversion to rebars		¥
Axial force (N _{Ed}) Bending moment about Y-axis (M _{Edy}) Bending moment about Z-axis (M _{Edy}) Torsional moment (T _{Ed}) Shear force in Y-axis (V _{Edy}) Shear force in Z-axis (V _{Edy}) > Design As > Conversion to rebars > Interaction diagram		¥
Axial force (N _{Ed}) Bending moment about Y-axis (M _{Edy}) Bending moment about Z-axis (M _{Edy}) Torsional moment (T _{Ed}) Shear force in Y-axis (V _{Edy}) Shear force in Z-axis (V _{Edy}) > Design As > Conversion to rebars > Interaction diagram		y Jes >>>

Amount of required reinforcement will be slightly higher in this case since M_{Edz} is also considered.

Col	umn l	B2				REC	T (350;	350)		
EC EN	1992-1-1:2	004/AC:2	800			Secti	on 0 [dx =	0 m]		
Mem	iber length		Ld =	4.5 m		Mat	terials			
Buck	ling length	у	Ly =	9.01 m		Conc	rete	C45	/55	
Buck	ling length	z	Lz =	9.01 m		Reinf	forcement	B 50	AO	
Longi	tudinal r	einforc	ement					Shear	reinfo	rcement
φ = 1	6 mm, c =	30 mm,						n _{s.rec}	q = 2, φ _{s.rec}	$q = 8 \text{ mm}, \alpha_{s,req} = 90^{\circ}$
A _{s.z+} : 1.3	of longit 35*LC1+1.5 5*LC1+1.5	0*LC2 : N	_{Ed} = -2175	kN, M _{Edy}						
A _{s.z} .: 1.3						EOZ	-25 KINIII			
A _{s.z} .: 1.3 equired	ł			-		, TEOZ	-25 KINIII			
	d Layer	у [m]	z [m]	A _{s.stat} [mm ²]	A _{s.det.min}	A _{s.det.max} [mm ²]	ΔA _{s.tor}	A _{s.req} [mm ²]	A _{s.req.bar} [mm ²]	Reinf
equire					A _{s.det.min}	A _{s.det.max}	ΔA _{s.tor}			Reinf 11¢16

⇒ Biaxial bending calculation

F F	<u>M</u> z) M _v
	†
	L
	▼

This method allows to design reinforcement for a normal force (N_{Ed}) and biaxial bending moments. This method is based on an interaction formula, equation 5.39 in EN 1992-1-1.

$$\left(\frac{M_{Edz}}{M_{Rdz}}\right)^{a} + \left(\frac{M_{Edy}}{M_{Rdy}}\right)^{a} \le 1,0$$
(5.39)

where:

M_{Edz/y} design moment, including a 2nd order moment (if required)

M_{Rdz/y} moment resistance a exponent:

- for circular and elliptical cross sections: a = 2

for rectangu	lar cross	sections	S:
$N_{\rm Ed}/N_{\rm Rd}$	0,1	0,7	1,0
a =	1,0	1,5	2,0

with linear interpolation for intermediate values

N_{Ed} design value of axial force

 $N_{Rd} = A_c \cdot (f_{cd} + \mu_s \cdot f_{yd})$, design axial resistance of the section, where:

- A_c gross area of the concrete section
- f_{cd} design value of concrete compressive strength
- fyd design yield strength of reinforcement
- μ_s mechanical reinforcement ratio in the calculation of limit slenderness obtained with an iterative calculation

4 CIRCULAR COLUMN

For circular and oval columns, the design method is always the biaxial calculation, regardless of the design method set in the Concrete settings.

For circular and oval columns, the required number of reinforcement bars is spread equally along the face of the column.

Example: 'Circular column.esa'

Geometry

Column cross-section: CIRC diameter 400mm Height: 4,5 m Concrete grade: C45/55

Loads

Load configuration:	$N_{Ed} = 2175,00 kN$
	$M_{yd} = 142,50 kNm$
	$M_{zd} = 0kNm$

Concrete Setup

Geometrical imperfection and 2nd order moments are deactivated: Concrete settings > Complete Setup view :

iews	Co	omplete setup 👻 View settings 👻 Load default Find							Vational a	nnex: 🔣	2
1)escr	ription	Symbol	Value	Default	Unit	Chapter	Code	Struc	Check	
<all< th=""><th></th><th></th><th><all> ₽</all></th><th><all></all></th><th><all> D</all></th><th></th><th><all> D</all></th><th><all></all></th><th><a d<="" th=""><th><a q<="" th=""><th></th></th></th></all<>			<all> ₽</all>	<all></all>	<all> D</all>		<all> D</all>	<all></all>	<a d<="" th=""><th><a q<="" th=""><th></th></th>	<a q<="" th=""><th></th>	
4 0	esig	gn defaults							-		
		einforcement									
	м	linimum cover									
4	olve	ersetting									
	Ge	eneral									
	In	nternal forces									
		Shear force reduction above supports					6.2.1(8)	EN 1992	Beam,	Solver	
		Moment reduction above supports					5.3.2.2 (4)	EN 1992	Beam,	Solver	
		Shifting of moment curve to cover additional tensile force caused by shear			~		9.2.1.3(2)	EN 1992	Beam,	Solver	
		Geometric imperfection in ULS e	i,ULS				5.2(2)	EN 1992	Column	Solver	
		Geometric imperfection in SLS e	i,sls				5.2(3)	EN 1992	Column	Solver	
		Minimum eccentricity e	min	In first ord	In first		6.1(4)	EN 1992	Column	Solver	
		First order eccentricity with the equivalent moment		~	~		5.8.8.2(2)	EN 1992	Column	Solver	
	►	Second order eccentricity	2				5.8.8	EN 1992	Column	Solver	
	4	Internal forces modifications	-								
			lim	0.10	0.10			Independ	1D (Be	Solver	
		⊳ Beam									
		Column									

All detailing provisions are considered.

Design defaults

The bar diameter is set to ϕ 20mm in Reinforcement design > Design defaults > Tab Columns, or from 1D Member data if applied.

ws: Cor	mplete setup 👻 View settings 🔻	L	oad defau	lt	Find						Natio	nal annex: 🏼 🌔
Descri	ption		Symbol		Value	Default		Unit	Chapter	Code	Structure	CheckType
>		2	<all></all>	P	<all></all>	<all></all>	ρ	< P	<all> 🔎</all>	<all> \wp</all>	<all> 🔎</all>	<all> 🔎</all>
Desigr	n defaults											
⊿ Re	inforcement											
⊳	Beam / Rib											
⊳	Beam slab											
- A	Column											
	Design of provided reinforcement									Independent	Column	Design def
	Rectangular section				Column_R	Column_	R			Independent	Column	Design def
	Circular				Column_C	Column_	С			Independent	Column	Design def
	Oval				Column	Column_	0			Independent	Column	Design def
	Other and general				Column	Column_	0			Independent	Column	Design def
	 Longitudinal 											
	 Main (m) 											
	Type of cover				User	Auto			4.4.1	EN 1992-1-1	Column	Design def
	Concrete cover (c)		с		35.0	30.0		mm	4.4.1	EN 1992-1-1	Column	Design def
	Diameter		d _{s.m}		20	16.0		mm		EN 1992-1-1	Column	Design def
	Detailing (det)											
	 Stirrups (sw) 											
	Diameter		d _{ss}		8.0	8.0		mm		EN 1992-1-1	Column	Design def
	Number of cuts		n _s		2.0	2.0				Independent	Column	Design def
⊳	Plate											
⊳	Wall / Deep beam											

Results

Go to Reinforcement design > 1D members > Reinforcement design.

Choose Standard output in the Properties window and open the Preview at the bottom of the Properties window:

Edge	Layer	y [m]	z [m]	A _{s.stat} [mm ²]		A _{s.det.max} [mm ²]	ΔA _{s.tor} [mm ²]	A _{s.req} [mm ²]	A _{s.req.bar} [mm ²]	Reinf
	-	-	-	1142	1257	5001	0	1257	1571	5ф20*
uire 	d bars									
1		, t ^z y								

In this example $A_{s,req}$ is determined by the minimum amount of reinforcement according to the detailing provision, $A_{s,det,min}$.

Since $A_{s,req} = 1257mm^2$, the software will propose 5 bars of $\phi 20mm$ (5*314mm² = 1571mm² = $A_{s,req,bar}$) which is the closest amount of bar with $A_{s,req,bar} > A_{s,req}$.

Note that SCIA Engineer uses the real area of the bars to calculate the required reinforcement area. So, the final required reinforcement displayed on the screen is $A_{s,req,bar}$.

Remark 1: If you choose a template without bars predefined in Design Default, for example "Column_Circ-Empty", the software will display only the A_{s,req} and not A_{s,req,bar} as mentioned above.

Remark 2:

According to *EN1992-1-1 art 9.5.2(4)*, there is a minimum number of bars in a circular column. This parameter is set by default to "4" in Concrete Settings > Complete setup view.

iews:	Co	mplete	setup 👻 View settings 👻	Load defau	lt	Find					Natio	nal annex:	$\langle 0 \rangle$	
De	escri	ption		Symbol	Va	lue	Default	Unit	Chapter	Code	Structure	CheckTy	/pe	
<all></all>			Q	<all></all>	₽ <a< th=""><th>l⊳ µ</th><th><all></all></th><th>Q < Q</th><th>) <all></all></th><th>O <all> ♀</all></th><th>all> 🔎</th><th><all></all></th><th>ρ</th><th></th></a<>	l⊳ µ	<all></all>	Q < Q) <all></all>	O <all> ♀</all>	all> 🔎	<all></all>	ρ	
⊳	De	flectio	ns											
	De	tailing	g provisions											
	⊳	Beam	n / Rib											
	⊳	Beam	i slab											
		Colun	nn											
		⊿ Lo	ongitudinal											
			Check min. bar distance						8.2(2)	EN 1992-1-1	Column	Solver se	ett	
			Minimal bar distance	Slo,min	20		20	mm	8.2(2)	EN 1992-1-1	Column	Solver se	ett	
			Check max. bar distance				Image: A start of the start			Independent	Column	Solver se	ett	
			Maximal bar distance	Slc,max	350)	350	mm		Independent	Column	Solver se	ett	
			Check max. bar distance (torsion)						9.2.3(4)	EN 1992-1-1	Column	Solver se	ett	
			Maximal bar distance (torsion)	Slot,max	350)	350	mm	9.2.3(4)	EN 1992-1-1	Column	Solver se	ett	
			Check min. reinforcement area				Image: A start of the start		9.5.2(2)	EN 1992-1-1	Column	Solver se	ett	
			Check max. reinforcement area				Image: A start of the start		9.5.2(3)	EN 1992-1-1	Column	Solver se	ett	
			Check min. bar diameter				~		9.5.2(1)	EN 1992-1-1	Column	Solver se	ett	
			Check min. number of bars				~		9.5.2(4)	EN 1992-1-1	Column	Solver se	ett	
			 Minimal number of bars in circular col 	n _{lo,min}	4.0		4.0		9.5.2(4)	EN 1992-1-1	Column	Solver se	ett	
		4 Tr	ansverse											
			Check max. percentage of stirrups				~		6.2.3(3)	EN 1992-1-1	Column	Solver se	ett	
			Check min. mandrel diameter						8.3(2)	EN 1992-1-1	Column	Solver se	ett	

If we increase the loads:

 $F_z = -1250 kN$

M = 50 kNm

The results are as follows:

Exemple: "Circular column_increase.esa"

Overa	all De	esign	(ULS)								
Linear ca Combinati Coordinate Extreme Selection:	ion: CO1 e systen 1D: Glob	n: Principa	al								
Longitud	linal re	quired r	einforceme	nt							
Longitud Name	linal re dx [m]	quired r Case	einforceme Member	nt A _{sz req+} [mm ²] A _{sz req bar+} [mm ²]	A _{sz req} - [mm ²] Asz req bar- [mm ²]	A _{sv req+} [mm ²] A _{sv req bar+} [mm ²]	A _{sv req} . [mm ²] A _{sv req bar} . [mm ²]	A _{sz req} [mm ²] A _{sz req bar} [mm ²]	A _{sv req} [mm ²] A _{sv req bar} [mm ²]	A _{s req} [mm ²] A _{s req bar} [mm ²]	ReinfRee
	dx			A _{sz req+} [mm ²] A _{sz req bar+}	[mm ²] A _{sz reg bar-}	[mm²] A _{sy reg bar+}	[mm²] Asy req bar-	[mm²] A _{sz reg bar}	[mm²] A _{sy req bar}	[mm ²] A _{s req bar} [mm ²]	ReinfRec

The corresponding bar configuration is:

2.3.2. Calculation of internal forces

↓ DETERMINING IF MEMBER IS IN COMPRESSION

2nd order effects, geometrical imperfection and minimal eccentricity are considered only if:

- Member type = Column
- Compression in the column is relatively high

In SCIA Engineer, there is a parameter which allows to decide whether a member is in compression or if the compression is too small to be considered.

In Concrete settings > Complete setup view :

/iew	/s:	Complete setup 👻 View settings 👻 Load defau	ut F	Find					Nationa	il annex: 😽	
	De	escription	Symbol	Value	Default	Unit	Chapter	Code	Structu	CheckT	
<al< th=""><th></th><th></th><th><all> ₽</all></th><th><all></all></th><th><all></all></th><th><</th><th><all></all></th><th><all></all></th><th><all> ₽</all></th><th>-</th><th></th></al<>			<all> ₽</all>	<all></all>	<all></all>	<	<all></all>	<all></all>	<all> ₽</all>	-	
4	De	esign defaults									
	⊳	Reinforcement									
	⊳	Minimum cover									
4	So	olver setting									
		General									
		Limit value of unity check	Lim.check	1.0	1.0			Independent	All (Bea	Solver se	
		Value of unity check for not calculated unity check	Ncal.check	3.0	3.0			Independent	All (Bea	Solver se	
		The coefficient for calculation effective depth of cross-sec	Coeff _d	0.9	0.9			Independent	All (Bea	Solver se	
		The coefficient for calculation inner lever arm	Coeff _z	0.9	0.9			Independent	All (Bea	Solver se	
		The coefficient for calculation force, where member as u	Coeff _{com}	0.1	0.1			Independent	All (Bea	Solver se	
		 Creep and shrinkage 									
		Age of concrete at the moment considered t	t	18250.00	18250.00	day	3.1.4.B.1-2	EN 1992-1-1	All (Bea	Solver se	
		Relative humidity F	RH	50	50	%	3.1.4.B.1-2	EN 1992-1-1	All (Bea	Solver se	
		Type input of creep coefficient	Type q (t,to)	Auto	Auto		3.1.4(2)	EN 1992-1-1	All (Bea	Solver se	
		Age of concrete at loading t	ta.	28.00	28:00	dav	3.1.4(2) B1	EN 1992-1-1	All (Bea	Solver se	

Condition is:

- If $N_{Ed} \leq$ Coeff_{com} * f_{cd} * A_c Member is in compression
- If N_{Ed} > Coeff_{com} * f_{cd} * A_c Compression is not sufficient (zero or relatively small)

This result can be viewed in Reinforcement design > 1D member > Internal forces.

The Detailed output gives:

```
\label{eq:compression member} \begin{split} & \text{Compression member} \\ & \text{Limit axial force to consider member as compression:} \\ & N_{com} = -\operatorname{Coeff_{com}} \cdot \left(f_{cd} \cdot A_c \right) = -0.1 \cdot \left(30 \cdot 10^6 \cdot 0.123\right) = -368 \text{ kN} \\ & \text{Check condition:} \\ & N_{Ed} < N_{com} = -1100 \text{ kN} < -368 \text{ kN} \dots \quad \text{compression member} \\ & \text{Note: First and second order eccentricity shall be taken into account, because the member is considered as a compression member (significant normal force is presented).} \end{split}
```

4 CHOICE BETWEEN 1st and 2nd ORDER CALCULATION

Slenderness – Check of the criteria $\lambda < \lambda_{lim}$

- If $\lambda < \lambda_{\text{lim}}$, 1st order effects have to be taken into account with geometric imperfection (art 5.2)
- If $\lambda > \lambda_{\text{lim}}$, 2nd order effects have to be taken into account with geometric imperfection (art 5.2)

The values for λ and λ_{lim} , and the corresponding check, can be found in the main menu Deign > Concrete 1D > Slenderness for design :

(i)	
	TS (1)
Name	Slenderness(Design)
▼ SELECTION	
Type of selection	Current \checkmark
Filter	No \checkmark
Results in sections	All \checkmark
▼ RESULT CASE	
Type of load	Combinations \checkmark
Combination	ELU-Set B (auto) 🗸
▼ EXTREME 1D	
Extreme 1D	Global \checkmark
Values	λ ∨
Interval	\bigcirc
▼ OUTPUT SETTINGS	
Output	Brief \lor
Print combination key	
DRAWING SETUP 1D	
ERRORS, WARNINGS AND NOTES S	SETTINGS
Run using Model Data files (Debug)	\bigcirc
ACTIONS >>>>	
Refresh	
 New combination from Combin Preview 	ation key

The Standard output shows the check of $\lambda > \lambda_{lim}$ and indicates whether a 1st or 2nd order calculation should be done.

lendern near calculation ad case: LC1 ordinate sys treme 1D: G lection: All	tem: Principa						
Column	B1			RECT (35	0; 350)		
Column EC EN 1992-1-1:2				RECT (35 Section 0 [d:			
EC EN 1992-1-1:2 Slenderness	004/AC:2008	L-4 [m]	ß- (Section 0 [d:	x = 0 m]	λι	λ . (λ (.
EC EN 1992-1-1:2		L _{z/γ} [m] 4.5	β _{zz/yy} [-]	•		λ _{limz/y} [-] 46.5	$\lambda_{z/y} > \lambda_{iimz/y}$

4 1st ORDER EFFECTS

1st order effects (eccentricity) are always considered.

There are 2 ways to calculate the 1st order moments and eccentricity in SCIA Engineer depending on check box **First order eccentricity with the equivalent moment** in Concrete Setup > Solver setting > Internal forces.

The 2 options are:

• First order eccentricity with the equivalent moment = YES, bending moments at the ends of the column will be taken to calculate an equivalent 1st order bending moment. This leads to the same 1st order bending moment along the whole length of the member.

 $e_{0y} = M_{0ez}/N_{Ed}$ et $e_{0z} = M_{0ey}/N_{Ed}$

With

$$M_{0e} = (0.6 * M_{02}) + (0.6 * M_{01}) \ge 0.4 * M_{02}$$

• First order eccentricity with the equivalent moment = NO, 1st order eccentricity is calculated from bending moments in current section. As a result, bending moments in each section can be different.

 $e_{0y} = M_z/N_{Ed} \quad \text{ et } e_{0z} = M_y/N_{Ed}$

Values of the 1st order eccentricities and moments can be viewed in Design > Concrete 1D > Internal forces for design.

Standard output gives:
nternal forces	(Desig	, <i>)</i>						
ombination: ULS								
oordinate system: Princip xtreme 1D: Global	ai							
election: All								
Column B1			PECT (35)	1.350)				
COLUMN D I EC EN 1992-1-1:2004/AC:2008			RECT (350; 350) Section 0 [dx = 0 m]					
LC LIN 1352-1-1.2004/AC.2008			Section 0 [ux	= 0 11]				
Extreme: ULS/1 (ULS) Type: Combination (linear) Design situation: EN-ULS (STR/GEO) S		м	м	V	V	M		
Type of load		M _y	M _z	Vy	Vz	^		
	[kN] -300.0	[kNm] -30.0	[kNm]	[kN] 0.0	[kN]	[kNm] 0.0		
Internal forces (FEM-based)								

Axis	Bra	iced	L _{z/y} [m]	β _{zz/yy}	[-] I _{0z/}	[m]	λ _{z/γ} [-]	λ _{limz/y} [-]	λ _{z/y} :	> λ _{limz/y}
у-у⊥	N	10	4.5	2	9	.01	89.2	46.5	2 nd	order
z-z—	N	10	4.5	2	9	.01	89.2	46.5	2 nd	order
ond orc	ler effe N _{Ed}	ct and i M _{0Edy/z}	mperfe M _{2y/z}	ctions M _{Edy/z}	e _{0z/y}	e _{iz/y}	e _{0min,z/y}	e _{0Edz/y}	e _{2z/y}	e _{Edz/y}
AAIS	[kN]	[kNm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm
у-у⊥	-300	-30	0	-30	100	0	0	100	0	100
z-z⊥	-300	0	0	0	0	0	0	0	0	0
	,	alculat	ed)							VI Fd x
-	-		N _{Ed}	N	l _{Ed,y}	$\mathbf{M}_{\text{Ed},z}$	V _{Ed,y}	V _{Ed,z}	· ·	Ed,x
sign for Type of loa	-	arculate	-		l _{Ed,y} cNm]	M _{Ed,z} [kNm]	V _{Ed,y} [kN]	V _{Ed,z} [kN]		kNm]

GEOMETRICAL IMPERFECTION (art 5.2)

The effect of geometric imperfections always have to be taken into account: both in a 1^{st} and 2^{nd} order calculation.

Geometrical imperfection is by default activated in Concrete settings > Internal forces

neret	te settings)
ews:	Complete setup 👻 View settings 💌 Load default	lt 🗌	F	ind					Nationa	l annex:	
De	escription S	ymbol		Value	Default	Unit	Chapter	Code	Structu	CheckT	1
all>	> <	all>	ρ	<all></all>	<all> 🔎</all>	<	<all> 🔎</all>	<all> 🔎</all>	<all> 🔎</all>	<all> 🔎</all>	
De	esign defaults										
⊳	Reinforcement										
⊳	Minimum cover										
Sol	olversetting										
⊳	General										
	Internal forces										
	Shear force reduction above supports						6.2.1(8)	EN 1992-1-1	Beam,B	Solver se	
	Moment reduction above supports						5.3.2.2 (4)	EN 1992-1-1	Beam,B	Solver se	
	Shifting of moment curve to cover additional tensile forc			~	Z		9.2.1.3(2)	EN 1992-1-1	Beam,Ri	Solver se	ſ
	Geometric imperfection in ULS e _i	,ULS		~	~		5.2(2)	EN 1992-1-1	Column	Solver se	
	Geometric imperfection in SLS e _i	,SLS					5.2(3)	EN 1992-1-1	Column	Solver se	
	Minimum eccentricity e _n	min		In first order	In first or		6.1(4)	EN 1992-1-1	Column	Solver se	
	First order eccentricity with the equivalent moment			~	~		5.8.8.2(2)	EN 1992-1-1	Column	Solver se	
	Second order eccentricity e2	2					5.8.8	EN 1992-1-1	Column	Solver se	
	Internal forces modifications										
⊳	Design As										

In SCIA Engineer, the geometrical imperfection is represented by an inclination according to clause 5.2(5) in EN 1992-1-1.

For both axis (y and z of LCS), the inclination is calculated as followed:

$$\theta_{i,y(z)} = \theta_0 \cdot \alpha_h \cdot \alpha_{m,y(z)}$$
(5.1)

 θ_0 basic value of inclination

reduction factor for length of column or height of structure: $\alpha_h = 2/\sqrt{I}$; $2/3 \le \alpha_h \le 1$ α_h reduction factor for numbers of members: $\alpha_{m,y(z)}$ $\alpha_{m,v(z)} = \sqrt{(0.5 \cdot (1 + 1 / m_{v(z)}))}$ length of column or height of structure depending on: T

- isolated member I = L, where L is the length of the member
- not isolated member I = H, where H is the total height of building (buckling system).
- number of vertical members contributing to the total effect of the imperfection perpendicular m_{y(z)} to y(z).

Values of I and $m_{y(z)}$ will be defined in the buckling data.

The effect of imperfection for isolated column and for structure is always taken into account as an eccentricity according to clause 5.2(7a) in EN 1992-1-1:

 $e_{i,v} = \theta_{i,z} \cdot I_{0,z} / 2, e_{i,z} = \theta_{i,v} \cdot I_{0,v} / 2$

The imperfection shall be taken into account in ultimate limit states and does not need to be considered for serviceability limit states, see clause 5.2(2P) and 5.2(3) in EN 1992-1-1.

The user can set independently if the imperfection will be taken into account for ULS or SLS in the Concrete settings.

A minimum 1st order eccentricity is also calculated according to clause 6.1(4) in EN 1992-1-1. This can be viewed in Concrete settings > Internal forces > Use minimum value of eccentricity

· · · · · ·	Consulate action of the US	— ——		P. 1				N-6				
rews:	Complete setup View settings	Load de	fault	Find				National	annex:			
De	scription	Symbol	Value	Default	Unit	Chapter	Code	Struc	Check		Remark	
all>	<u>م</u>	all> 🔎	all>	⊂all>)	<all> 🔎</all>	<all></all>	<a th="" 🔎<=""><th><al th="" 🔎<=""><th></th><th></th><th></th></al></th>	<al th="" 🔎<=""><th></th><th></th><th></th></al>			
De	sign defaults										A) No e ₀ =e ₁ +e _i	
⊳	Reinforcement										$e=e_0+e_2$	
⊳	Minimum cover											
Sol	versetting										B) Min. ecc. to first or	rder ecc.
⊳	General										e ₀ =max(e ₁ +	e;;e _{0min})
	Internal forces										e=e_+e2	i onin
	Shear force reduction above supports					6.2.1(8)	EN 1992-1.	. Beam,	Solver		C) Min. ecc. to final ecc.	
	Moment reduction above supports					5.3.2.2 (4)	EN 1992-1.	. Beam,	Solver			
	Shifting of moment curve to cover additional .					9.2.1.3(2)	EN 1992-1.				$e_0 = e_1 + e_i$	
	Geometric imperfection in ULS	ei,ULS				5.2(2)	EN 1992-1.			<<	U	
	Geometric imperfection in SLS	e _{i,SLS}				5.2(3)	EN 1992-1.				e= max(e ₀ +	$e_2, e_{0\min}$
	Minimum eccentricity	e _{min}	In first ord	In first		6.1(4)	EN 1992-1.					
	First order eccentricity with the equivalent mo					5.8.8.2(2)	EN 1992-1.				e _{0min} =max(h/30;20mm)	
	Second order eccentricity	e ₂				5.8.8	EN 1992-1.	. Column	Solver		-00000 -0000	,
	Internal forces modifications										The minimum value of the eccentricity	/ can be set as
	Design As										follows:	. 16
	Conversion to rebars										A) Switched OFF, no minimum value is B) The minimum is considered for the	
	Interaction diagram										the first order eccentricity	calculation of
	Shear									(C) The minimum is considered for the	final value of th
⊳	Torsion										eccentricity	

Buckling data for I and m_y(z)

Settings for I and $m_y(z)$ for the calculation of the geometrical imperfection can be set in the properties of the columns.

Properties > System lengths and buckling settings

MEMBER (1) MEMBER (1) Image: Standard S	5	
Name B8 Layer Calque1 ∨ Type column (100) ∨ Analysis model Standard ∨ Standard ∨ Standard ∨ Cross-section CS2 - Rectangle (350; 350)' Alpha [deg] 0.00 Member system-line at Centre ∨ ey [mm] 0.00 ez [mm] 0.00 LCS Rotation [deg] 0.00 V LCS Rotation [deg] System lengths and buckling sett Default ∨ Material and no. of parts Concrete - 1	MEMI	BER (1)
Layer Calque1 ∨ □ Type column (100) ∨ Analysis model Standard ∨ FEM type standard ∨ Cross-section CS2 - Rectangle (350; 350) □ Alpha [deg] 0.00 Member system-line at Centre ∨ ey [mm] 0.00 ez [mm] 0.00 LCS Rotation [deg] 0.00 V LCS Rotation [deg] System lengths and buckling sett Default ∨ Material and no. of parts Concrete - 1	每 🖊	
Type column (100) ∨ Analysis model Standard ∨ FEM type standard ∨ Cross-section CS2 - Rectangle (350; 350)' ::: Alpha [deg] 0.00 Member system-line at Centre ∨ ey [mm] 0.00 ez [mm] 0.00 LCS Rotation [deg] 0.00 ▼ BUCKLING System lengths and buckling sett Default ∨ Material and no. of parts Concrete - 1	Name	B8
Analysis model Standard ∨ FEM type standard ∨ Cross-section CS2 - Rectangle (350; 350)' Alpha [deg] 0.00 Member system-line at Centre ∨ ey [mm] 0.00 ez [mm] 0.00 LCS Rotation [deg] 0.00 V ELCS Rotation [deg] System lengths and buckling sett Default ∨ Material and no. of parts Concrete - 1	Layer	Calque1 ∨
FEM type standard ∨ Cross-section CS2 - Rectangle (350; 350) Alpha [deg] 0.00 Member system-line at Centre ∨ ey [mm] 0.00 ez [mm] 0.00 LCS standard ∨ LCS Rotation [deg] 0.00 ▼ BUCKLING Default ∨ System lengths and buckling sett Default ∨ Material and no. of parts Concrete - 1	Туре	column (100) 🗸
Cross-section Alpha [deg] 0.00 Member system-line at ey [mm] 0.00 ez [mm] 0.00 LCS Rotation [deg] 0.00 ▼ BUCKLING System lengths and buckling sett Material and no. of parts CS2 - Rectangle (350; 350) CENTE ✓ 0.00 Centre ✓ 0.00 Standard ✓ Default ✓ Concrete - 1	Analysis model	Standard \lor
Alpha [deg] 0.00 Member system-line at Centre ∨ ey [mm] 0.00 ez [mm] 0.00 LCS standard ∨ LCS Rotation [deg] 0.00 ▼ BUCKLING Default ∨ System lengths and buckling sett Default ∨ Material and no. of parts Concrete - 1	FEM type	standard \vee
Member system-line at ey [mm] Centre ∨ ey [mm] 0.00 ez [mm] 0.00 LCS standard ∨ LCS Rotation [deg] 0.00 ▼ BUCKLING BUCKLING System lengths and buckling sett Default ∨ Material and no. of parts Concrete - 1	Cross-section	CS2 - Rectangle (350; 350)
ey [mm] 0.00 ez [mm] 0.00 LCS standard ∨ LCS Rotation [deg] 0.00 ▼ BUCKLING System lengths and buckling sett Default ∨ Material and no. of parts Concrete - 1	Alpha [deg]	0.00
ez [mm] 0.00 LCS standard ∨ LCS Rotation [deg] 0.00 ▼ BUCKLING System lengths and buckling sett Default ∨ Material and no. of parts Concrete - 1	Member system-line at	Centre \checkmark
LCS standard ∨ LCS Rotation [deg] 0.00 ▼ BUCKLING System lengths and buckling sett Default ∨ Material and no. of parts Concrete - 1	ey [mm]	0.00
LCS Rotation [deg] 0.00 ▼ BUCKLING System lengths and buckling sett Default ∨ Material and no. of parts Concrete - 1	ez [mm]	0.00
▼ BUCKLING System lengths and buckling sett Default ∨ ∴ Material and no. of parts Concrete - 1	LCS	standard \vee
System lengths and buckling sett Default \checkmark Material and no. of parts Concrete - 1	LCS Rotation [deg]	0.00
Material and no. of parts Concrete - 1	▼ BUCKLING	
	System lengths and buckling sett	Default 🗸 📑
Cocondary member	Material and no. of parts	Concrete - 1
Secondary member	Secondary member	\bigcirc

GEOMETRY

System lengths and buckling settings			– 🗆 X
	• y-y Defi z-z = Defi > Active buckling constraints > Span settings Buckling length factors Beta yy factor Calcu	ulate v Swa n setup v 1 v	span for y-y axis yy y-y
			Save Cancel

When opening the buckling menu, you need to define both the '**Active buckling constraints**' and '**Span settings**' for buckling around the local y-axis (buckling span y-y) and local z-axis (buckling span z-z).

- **Total height determination**: set type of calculation of total height of building or length of the isolated columns.
 - *Calculate*: H tot will be calculated automatically as sum of lengths of all the members in the buckling system
 - Input: manual input value for H_{tot} in edit box Tot. height
- **my/z**: number of vertical members contributing to the total effect of the imperfection perpendicular to y/z axis of LCS.

Eccentricities due to geometrical imperfections can be viewed in Reinforcement design > 1D member > Internal Forces:

ond ord	ler effe	ct and i	mperfe	ctions						
Axis	N _{Ed} [kN]	M _{0Edy/z} [kNm]	M _{2y/z} [kNm]	M _{Edy/z} [kNm]	e _{0z/y} [mm]	e _{iz/y} [mm]	e _{0min,z/y} [mm]	e _{0Edz/y} [mm]	e _{2z/y} [mm]	e _{Edz/y} [mm]
у-у⊥	-405	-49.1	0	-49.1	100	21.2	20	121	0	121
z-z⊥	-405	8.1	0	8.1	0	0	-20	-20	0	-20

After calculation of 1st order eccentricity including effect of imperfection, the 1st order moment, including the effect of imperfections around y (z) axis of LCS is calculated:

$$M_{0Ed,y(z)} = N_{Ed} \cdot e_{oEd,z(y)}$$

 $e_{oEd,y(z)} = e_{0,y(z)} + e_{i,y(z)} > e_{0,\min,y(z)}$

e_{0,y(z)} 1st order eccentricity

e_{i,y(z)} eccentricity caused by geometrical imperfection

e_{0,min} minimum first order eccentricity

4 2nd ORDER EFFECTS

The EN 1992-1-1 defines several methods for 2nd order effects with axial loads(general method, simplified method based on nominal stiffness, simplified method based on nominal curvature...).

In SCIA Engineer the following methods are available:

- General method according to clause 5.8.2(2) based on a nonlinear calculation
- Simplified method based on nominal curvature according to clause 5.8.8

The simplified method is taken into account:

- For ultimate limit state
- For Member type = Column with compression according to "Determination if member is in compression"
- If option "Use second order effect" in switched ON, see Concrete settings > Internal forces. This option is activated by default.
- If slenderness λ > λ_{lim}, see chapter "Slenderness criteria"

The nominal 2nd order moment is calculated according to clause 5.8.8.2(3) in EN 1992-1-1:

$$M_{2,y(z)} = N_{Ed} * e_{2,z(y)}$$

With:

N_{Ed} design axial force e_{2.z(y)} 2nd order eccentricity

When all mentioned criteria above are met for the simplified method, the 2nd order eccentricity is calculated according to formula:

$$e_{2y(z)} = (1/r)_{z(y)} \cdot I_{0z(y)}^2 / c_{z(y)}$$

Otherwise :

 $e_{2,y(z)=0}$

With :

 $(1/r)_{z(y)}$ curvature around z(y), calculated according to clause 5.8.8.3

 $I_{0,z(y)}$ effective length of the column around z(y) – buckling length

c_{z(y)} factor depending on the curvature distribution around z(y) axis according to clause 5.8.8.2(4)

- = 8, for constant 1st order bending moment (non zero) along the column and in case that equivalent bending moment is taken into account ("Use equivalent first order value" ON).
 - = 10 otherwise.

λ_{z(y)} slenderness

 $\lambda_{z(y),lim}$ limit slenderness

Effective length

The effective length, or buckling length, is by default calculated by SCIA Engineer. Be aware that formulas for automatic calculation are only valid for simple structures!

Otherwise it is also possible to input the value of the effective length manually.

Automatic calculation of effective length

Calculation of effective length depends on the type of structure, sway or non-sway.

Two approximate formulas are used: one formula for a non-sway structure (resulting in a buckling factor $\beta \le 1$) and one formula for a sway structure (resulting in a buckling factor $\beta \ge 1$):

• For a non-sway structure:

$$\beta = \frac{(\rho_1 \rho_2 + 5\rho_1 + 5\rho_2 + 24)(\rho_1 \rho_2 + 4\rho_1 + 4\rho_2 + 12)2}{(2\rho_1 \rho_2 + 11\rho_1 + 5\rho_2 + 24)(2\rho_1 \rho_2 + 5\rho_1 + 11\rho_2 + 24)}$$

• For a sway structure:

$$\beta = x \sqrt{\frac{\pi^2}{\rho_1 x} + 4}$$

with	β	the buckling factor
	Ĺ	the system length
	E	the modulus of Young
	I	the moment of inertia
	Ci	the stiffness in node i
	Mi	the moment in node i
	фi	the rotation in node i

$$x = \frac{4\rho_{1}\rho_{2} + \pi^{2}\rho_{1}}{\pi^{2}(\rho_{1} + \rho_{2}) + 8\rho_{1}\rho_{2}}$$
$$\rho_{i} = \frac{C_{i}L}{EI}$$
$$C_{i} = \frac{M_{i}}{\phi_{i}}$$

The values for M_i and ϕ_i are approximately determined by the internal forces and the deformations, calculated by load cases which generate deformation forms, having an affinity with the buckling form.

The calculation of the β ratios is automatically done when calculating the structure linearly. For this, two additional load cases are calculated in the background:

- Load case 1:
 - on the beams, the local distributed loads qy=1 N/m and qz=-100 N/m are used
 - $\circ~$ on the columns the global distributed loads Qx =10000 N/m and Qy =10000 N/m are used.
- Load case 2:
 - o on the beams, the local distributed loads qy=-1 N/m and qz=-100 N/m are used
 - $\circ~$ on the columns the global distributed loads Qx =-10000 N/m and Qy=-10000 N/m are used.

Since these load cases, and thus the buckling ratios, are calculated during the linear calculation, it is necessary to always perform a linear calculation of the structure.

Note: The used approach gives good results for frame structures with perpendicular rigid or semi-rigid beam connections. For other cases, the user must evaluate the presented bucking ratios.

By default, the structure is considered as sway in y and z direction. It can be modified for the whole project in Concrete settings > General > Default sway type.

ws:	Co	mplete setup 👻 View settings 👻 Load defa	ult	Find						Nation	al annex: 🔫	2
De	scri	iption	Symbol	Value	De	fault	Unit	Chapter	Code	Structu	CheckTy	Π
ll>		Q	<all> 🔎</all>	<all></all>) <a< th=""><th>n⊳ µ</th><th><</th><th><all> 🔎</all></th><th><all> ₽</all></th><th><all> 🔎</all></th><th><all> 🔎</all></th><th></th></a<>	n⊳ µ	<	<all> 🔎</all>	<all> ₽</all>	<all> 🔎</all>	<all> 🔎</all>	
De	sig	n defaults										
⊳	Re	inforcement										
⊳	Mi	nimum cover										
So	lvei	r setting										
	Ge	neral										
		Limit value of unity check	Lim.check	1.0	1.0				Independent	All (Bea	Solver se	
		Value of unity check for not calculated unity check	Ncal.check	3.0	3.0				Independent	All (Bea	Solver se	
		The coefficient for calculation effective depth of cross-sec	Coeff _d	0.9	0.9)			Independent	All (Bea	Solver se	
		The coefficient for calculation inner lever arm	Coeff _z	0.9	0.9				Independent	All (Bea	Solver se	
		The coefficient for calculation force, where member as u	Coeff _{com}	0.1	0.1				Independent	All (Bea	Solver se	
		Creep and shrinkage										(
	Þ	SLS										
	ł											
	L		Sway yy	Image: A start of the start					Independent	All (Bea	Solver se	
	L	Sway around z axis	Sway zz						Independent	All (Bea	Solver se	
⊳		ternal forces										
₽		sign As										
⊳		onversion to rebars			_							
Þ		teraction diagram			-							
⊳	_	ear .										
₽	То	rsion										

You can easily modify these default settings for a specific column in the project within the buckling menu. This menu can be accessed – as explained in the previous section – by navigating to the option '**System lengths and buckling settings**' within the properties of the member.

3	
MEMI	BER (1)
套 🖊	
Name	B8
Layer	Calque1 V
Туре	column (100) 🗸
Analysis model	Standard \checkmark
FEM type	standard \lor
Cross-section	CS2 - Rectangle (350; 350)
Alpha [deg]	0.00
Member system-line at	Centre \checkmark
ey [mm]	0.00
ez [mm]	0.00
LCS	standard \vee
LCS Rotation [deg]	0.00
BUCKLING	
System lengths and buckling sett	Default 🗸 📑
Material and no. of parts	Concrete - 1
Secondary member	\bigcirc
▼ GEOMETRY	

System lengths and buckling settings	- 🗆 X
FF 18 7 8 8 0	
	Settings Results Name BG1 Buckling span Deflection span • y-y Deflection z= 2-2 = z-z • Active buckling constraints • Span settings Buckling length factors Beta yy factor Calculate * Sway y-y From setup Member imperfection in 2nd order analysis Total height Calculate
	my 1

This new setting has the name, here **BG1**, which you can attribute to others similar columns in their properties window:

MEMB	ER (1)
吾 🖊 🐧	
Name	B1
Layer	Standaard 🗸
Туре	column (100) 🗸
Analysis model	Standard V
FEM type	standard \checkmark
Cross-section	CS2 - CIRC (400) 🗸
Alpha	0 ~
Member system-line at	Centre \checkmark
ez [mm]	0.00
LCS	standard \vee
 BUCKLING 	
System lengths and buckling sett	8G1 🗸 🛁
Material and no. of parts	Default
Secondary member	BG1

The calculated effective length can be viewed in Design menu > Concrete 1D > Slenderness for design:

Slenderness(Design)

Linear calculation Load case: LC1 Coordinate system: Member Extreme 1D: Global Selection: All

Column B1	CIRC (400)
EC EN 1992-1-1:2004/AC:2008	Section 0 [dx = 0 m]

Slenderness

Axis	Braced	L _{z/y} [m]	β _{zz/yy} [-]	I _{0z/y} [m]	λ _{z/y} [-]	λ limz/y [-]	$\lambda_{z/y} > \lambda_{limz/y}$
у₋у⊥	No	4.5	2	9.01	90.3	29.6	2 nd order
z-z⊥	No	4.5	1	4.5	45.1	29.6	2 nd order

Manual input of effective length

The same option – as seen for the automatic calculation – allows you to manually define the buckling length of the system. The option 'Buckling length factors' can be accessed within the section 'Span settings'. In the table 'Settings per span for y-y/z-z axis' you can insert the buckling length which needs to be taken into account.

& RECALCULATED INTERNAL FORCE

In Concrete Menu > Reinforcement Design > 1D member > Internal forces.

The design moment, M_{Ed} , is equal to $M_{Ed} = M_{0Ed} + M_2$.

With :

M₂ 2nd order bending moment

M_{0Ed} bending moment taking into account 1st order and geometrical imperfections

Example: '2nd order.esa'

Geometry

Column cross-section: RECT 350x350mm² Height: 4,5 m Concrete grade: C45/55

Concrete Setup

All of the default values are kept. This means that geometrical imperfection and 2nd order effects are taken into account.

Loads

Load configuration: $N_d = 405,00kN$ $M_{yd} = 40,50kNm$ $M_{zd} = 0kNm$

Buckling data

Sway type is set by default. Calculation of the effective length is done automatically by the software.

Slenderness criterion

Check if 2nd order calculation is required following art 5.8.3.1:

Since $\lambda > \lambda_{lim}$, a 2nd order calculation will be required.

Note: the program automatically takes into account a second order moment if required. So, this check is just extra information for the user.

Internal forces

Ask for M_{Ed} in Design > Concrete 1D > Internal forces for design. The Standard output is chosen:

	ernal forces (FEM-based) -405.0 -40.5 0.0 0.0 0.0 0.0 0.0 0.0 ent: 1.35°LC1		ype of load		N [kN]	M _y [kNm]	M _z [kNm]	V _y [kN]	V _z [kN]		M _x [kNm]
ontent: 1.35*LC	tent: 1.35*LC1		nternal forces (FEM-ba	sed)	-405	5.0	-40.5	0.0	0.0	0.0	C	0.0
Axis	Avis NEd MoEdy/z M2y/z MEdy/z e0z/y e1z/y e0min.z/y e0Edz/y e2z/y eE	d order effect and imperfections	Nea					e _{iz/y}	e _{0min.z/y}	e _{0Edz/y}	e _{2z/y}	e _{Edz/y}
	Axis [kN] [kNm] [kNm] [kNm] [mm] [mm] [mm] [mm] [mm] [mm]	NEd M _{0Edy/z} M _{2y/z} M _{Edy/z} e _{0z/y} e _{1z/y} e _{0min.z/y} e _{0Edz/y} e _{2z/y} e _{Edz/y} [kN] [kNm] [kNm] [mm] [mm] <th>Axis NEd [kN]</th> <th>M_{0Edy/z}</th> <th>M_{2y/z}</th> <th>M_{Edy/z}</th> <th>e_{0z/y}</th> <th></th> <th>100 million 100 million 100</th> <th></th> <th></th> <th></th>	Axis NEd [kN]	M _{0Edy/z}	M _{2y/z}	M _{Edy/z}	e _{0z/y}		100 million 100			
Axis y-y⊥ z-z⊥	Axis [kN] [kNm] [kNm] [mm] [m] [m]	NEd [kN] M _{0Edy/z} M _{2y/z} M _{Edy/z} e _{0z/y} e _{1z/y} e _{0min.z/y} e _{0Edz/y} e _{2z/y} e _{Edz/y} -y [⊥] -405 -49.1 -73.2 -122 100 21.2 20 121 181 302	Axis N _{Ed} [kN] y-y ^{_1} -405	M _{0Edy/z} [kNm]	M _{2y/z} [kNm]	M _{Edy/z}	e _{0z/y}] [mm]	[mm]	[mm]	[mm]	[mm]	[mm
		nt: 1.35*LC1	ontent: 1.35*LC1									
menti 1.55 EC				seay	402		40.5	0.0	0.0	0.0		0.0
			iternal forces (FEM-ba	sed)			Second solution					
			/pe of load		[kN]	[kNm]	[kNm]	[kN]	[kN]	[[kNm]
	ernal forces (FEM-based) -405.0 -40.5 0.0 0.0 0.0 0.0 0.0	hal forces (FEM-based) -405.0 -40.5 0.0 0.0 0.0 0.0 0.0	pe of load			1	A Contraction of the second					

Results

The results for the reinforcement design are shown below:

Ca	se		N _{Ed} [kN]	V _{Edy} [kN]	V _{Edz} [kN]	T _{Ed} [kNm]	M _{Edy} [kNm]	M _{Edz} [kNn		λ/λ _{lim} y-y⊥		λ/λ _{lim} z-z⊥
UL	S/1		-300.0	0.0	0.0	0.0	-30.0) (0.0	-	-	
UL	S/2		-405.0	0.0	0.0	0.0	-122.3	3 71	1.6 2	2.38	2nd	2.38 2
UL	5/2		LC1 1.35*LC1									
ng	itudinal Basic	reinforceme Additional		ailing		A _{s,min} [mm ²]						Status
[1]	2 ф 16				500	61	500	402	1225	242	258	Not (
										≥37	-	
[2]	2 ф 16				385	61	385	402	1225	70	86	
										≥37	-	
[3]	2ф16				500	61	500	402	1225	242	258	Not
										≥37	-	
[4]	2ф16				385	61	385	402	1225	70	86	(
_						_			_	≥37	-	
ΣY	4 φ 16		777				1000	804				
	4016						770	804				
ΣZ	4410							and the second se				

Note that biaxial bending method was used for reinforcement calculation.

2.4. Plate design

2.4.1. Used example

♣ INPUT OF GEOMETRY

Project data: 2D environment = Plate XY

	DATA			MATERIAL	
	Name:	Example project		Concrete 🔽	
1	Part:	ACT Reinforce Concre	ete	Material C25 Reinforcement mate B 5	
	Description:	Plate design		Steel Masonry	
1	Author:	SCIA Engineer		Aluminium	
	Date:	03. 09. 2021		Timber Steel fibre concrete	
		Dista W/		CODE	
	Structure:	🕼 Plate XY	· · ·	National Code:	
	Post processing environment	🌾 default	Ŷ	EC - EN	•
in marke	Model:	関 One	~	National annex:	
		64hit ve	rsion info	Standard EN	¥ []

The Reinforcement material (e.g. B500A) chosen in the Project data window, will define the steel quality used for the theoretical reinforcement design.

• • • • • • •				o Opening1		1000 1000	- - - - - - - - - - - - - -
• • • • • • • • • • • • • • • • • • •		· · · · · · · · · · · · · · · · · · ·	Slab1			4000 6000	
A X	3333	B	2667 10000	<u> </u>	1000 D E		⊢ (−)

Properties of the slab and the line supports:

		×
	Name S1	
	Element type Standard	*
	Element behaviour Standard FEM	1
M Ja	Type plate (90)	*
	Material C20/25	×
	FEM model Isotropic	*
ez	FEM nonlinear model none	*
• <i>ć</i> /	Thickness type constant	
	Thickness [mm] 250	
IZ	LCS type Standard	*
	LCS angle [deg] 0.00	
x Y	Layer Layer1	×
⊳ Str	uctural model	
Line support on 2D member edge		×
Line support on 2D member edge	Name Sle1	×
Line support on 2D member edge	Name Sle1 Constraint Hinged	×
Line support on 2D member edge		×
Line support on 2D member edge	Constraint Hinged	*
Line support on 2D member edge	Constraint Hinged Z Rigid	*
Rz	Constraint Hinged Z Rigid Rx Free	×
Rz	Constraint Hinged Z Rigid Rx Free Ry Free	×
Rz	Constraint Hinged Z Rigid Rx Free Ry Free ometry	×
Rz	Constraint Hinged Z Rigid Rx Free Ry Free ometry System GCS	×
Rz	Constraint Hinged Z Rigid Rx Free Ry Free ometry System GCS Coord. definition Rela Position x1 0.000 Position x2 1.000	×
Rz	Constraint Hinged Z Rigid Rx Free Ry Free ometry System GCS Coord. definition Rela Position x1 0.000	×
Rx X A Ge	Constraint Hinged Z Rigid Rx Free Ry Free ometry System GCS Coord. definition Rela Position x1 0.000 Position x2 1.000	×

\rm 🕹 LOADS

⇒ Load cases & Load groups

Load Case	Action type	Load Group	Relation	EC1-Load type
Self-weight	Permanent	LG1	/	/
Walls	Permanent	LG1	/	/
Service load	Variable	LG2	Standard	Cat B: Offices

Load cases		Х
et -1 🖸 🗈 🖷 🐟 /	> 🛅 📄 🖸 All	* T
LC1 - Self weight	Name	LCI
LC2 - Walls	Description	Selfweight
LC3 - Service load	Action type	Permanent v
	Load group	LG1 ¥
	Load type	Selfweight *
	Direction	-Z *
New Insert Edit Delete		Close

et -1	🖸 🕩	4 4				
LG2				Name	LG2	
				Relation	Standard	*
				Load	Variable	
				Structure	Building	
				Load type	CatB: Offices	*

⇒ Load combinations

Type EN-ULS (STR/GEO) Set B Type EN-SLS Quasi Permanent

Combinations	>
et -i 🗹 🕩 🗟	🐟 🗢 🧧 Input combinations 🔹 👻
ULS-Set B (auto)	Name SLS-Quasi (auto)
SLS-Char (auto)	Description
SLS-Quasi (auto)	Type EN-SLS Quasi-permanent
	Updated automatically 🔽
	Structure Building
	Active coefficients
	4 Contents of combination
	LC1 - Self weight [-] 1.000
	LC2 - Walls [-] 1.000
	LC3 - Service load [-] 1.000
	Actions
	Explode to envelopes >>
	Explode to linear >>
	Show Decomposed EN combinations >>
New Insert Edit	Delete

⇒ Result classes

All ULS+SLS

🖻 📲 🗹 📴 🖥	🛉 \land 🗖 🛛 All	• T
AIIULS		Name All ULS+SLS
AII SLS		Description
All ULS+SLS	▲ List	
		ULS-SetB(auto)-EN-ULS(STR/GEO)SetB
		SLS-Char (auto) - EN-SLS Characteristic
		SLS-Quasi (auto) - EN-SLS Quasi-permanent

FINITE ELEMENT MESH

⇒ Introduction

2 types of finite elements are implemented in SCIA Engineer:

- The **Mindlin element** including shear force deformation, which is the standard in SCIA Engineer. The Mindlin theory is valid for the calculation of both thin and thick plates.

- The **Kirchhoff element** without shear force deformation, which can be used to calculate and design only thin plates.

The element type used for the current calculation is defined in the tools menu > Calculation & Mesh > Solver Settings:

⇒ Mesh generation

Via the tools menu \rightarrow Calculation & mesh \rightarrow Generate mesh

⇒ Graphical display of the mesh

Set view settings for all entities, via right mouse click in screen or more options > View settings for all entities

- Structure tab \rightarrow Mesh \rightarrow Draw mesh

- Labels tab \rightarrow Mesh \rightarrow Display label
 - ⇒ Mesh refinement

Via the tools menu \rightarrow Calculation & mesh \rightarrow Mesh settings Average size of 2D (mesh) elements is by default = 1m.

OR

The mesh size can be changed in the FE analysis window before running the calculation.

FE analysis		×
Calculations	▲ Mesh setup	
	Average number of 1D mesh element 1	
Linear analysis Load cases: 3	Average size of 1D mesh element on (0.200	
L	Average size of 2D mesh element [m] 1.000	
Other processes	Connect members/nodes 🔽	
Test input of data	Setup for connection of structural en	
	Advanced mesh settings	
Save project after analysis	 Solver setup 	
	Specify load cases for linear calculati	
	Advanced solver settings	
Calculate		

'Basic rule' for the size of 2D mesh elements: take 1 to 2 times the thickness of the plates in the project. For this example, take a mesh size of 0,25 m.

2.4.2. **Results for the linear calculation**

4 SPECIFICATION OF RESULTS

After running the linear calculation, go to the Results menu \rightarrow 2D members \rightarrow 2D Internal Forces. Specify the desired result in the Properties menu:

RESUL	TS (1)
Name	2D internal forces
SELECTION	
Type of selection	All \checkmark
Filter	No \vee
 RESULT CASE 	
Type of load	Combinations \checkmark
Combination	ULS-Set B (auto) \vee
Envelope (for 2D drawing)	Absolute extreme $ \smallsetminus $
Averaging of peak	\odot
Location	In nodes avg. on macro $ \smallsetminus $
System	LCS mesh element \vee
Extreme	Global \checkmark
Type of values	Basic magnitudes \vee
Values	m_x ~
 OUTPUT SETTINGS 	
Print combination key	
Standard result	
Results on sections	\bigcirc
Results on edges	\bigcirc
TABLE SETUP	
ERRORS, WARNINGS AND NOTES	SETTINGS
ACTIONS >>>	
Refresh	
New combination from Combination	nation key
Drawing setup 2D	
> Preview	

System:

- LCS mesh element: according to the local axes of the *individual* mesh elements
- LCS Member 2D: according to the LCS of the 2D member (<u>Pay attention</u> when working with shell elements!)

Location: 4 different ways to ask for the results, see chapter Results

Type forces: Basic, Principal or Design magnitudes, see Annex 1 **Drawing setup 2D**: Click on the button . Here you can modify the display of 2D results (Isobands / Isolines / Numerical results / ...), modify the minimum and maximum settings, ...

After making changes in the Properties menu, you always have to execute the 'Refresh' action.

4 TYPES OF RESULTS

⇒ Basic magnitudes

Combination = ULS; Type forces = Basic magnitudes; Envelope = Minimum; Values = m_x

These are the characteristic values coming from de FE-analysis in the center of the plate.

⇒ Elementary design magnitudes

The convention for the sign of the design moments has been changed since the v17 post-processor. Now a moment is positive when it causes a tensile force on the bottom of the plate and negative when it causes tensile force at the top of the plate.

In the v16 post-processor a design moment is positive when you should reinforce for this moment. This means that for a positive value for m_xD + there is a tensile force at the top of the plate and that for a positive value for m_xD - there is a tensile force at the bottom of the plate.

The available values are mxD, myD and mcD, where 'D' stands for design. The '+' and '-' respectively stand for the values at the positive and negative side of the local z axis of the 2D member. So for instance the value mxD+ is the moment that will be used for the design of the upper reinforcement in the local x-direction of the 2D member.

The calculation of design moments for *plates* and *shells* according to the EC2 algorithm follows the chart from CSN P ENV 1992-1-1, Annex 2, paragraph A2.8.

What happens, is that for the 3 characteristic (bending and torsion) moments an equivalent set of 3 design moments is calculated:

mx		mxD
my	~	myD
mxy		mcD

It is clear that mxD and myD are the moments to be used for the reinforcement design in the respective direction. The quantity mcD is the design moment that has to be taken by the concrete. The Eurocode does not mention any check for this value, but it is however available in SCIA Engineer for the reason of completeness.

The calculation of design forces for *walls* according to the EC2 algorithm follows the chart from CSN P ENV 1992-1-1, Annex 2, paragraph A2.9.

Analogously, if membrane effects are present, for the 3 characteristic membrane forces an equivalent set of 3 design forces is calculated:

nx		nxD
ny	~	nyD
nxy		ncD

Here, the quantity ncD does have a clear meaning: it is the compression force that has to be taken by the concrete compression struts. Therefore, to make sure that concrete crushing will not occur, the value ncD should be checked to be \leq fcd.

<u>Attention</u>: These design magnitudes are not the ones used by SCIA Engineer for the reinforcement design in the Concrete menu. A much more refined transformation procedure is implemented there to calculate the design magnitudes from the basic magnitudes.

⇒ Principal magnitudes

Results menu \rightarrow 2D members \rightarrow 2D stresses/strain Combination = ULS; Type forces = Principal stress; Envelope = Maximum; Values = σ 1+

'1' and '2' refer to the principal directions, calculated based on Mohr's circle. The first direction is the direction of maximum tension (or minimum compression). The second direction is the direction of maximum compression (or minimum tension).

Keep in mind that the most economic reinforcement paths are the ones that follow the trajectories of the principal directions!

COMPARISON MINDLIN ⇔ KIRCHHOFF

⇒ Shear force vx

Combination = ULS; Type forces = Basic magnitudes; Envelope = Maximum; Values = v_x

Mindlin vx-max [kN/m] 587.50 525.00 462.50 400.00 337.50 275.00 212.50 150.00 Opening1 75.00 0.00 -50.00 -100.00 -150.00 -212.50 -275.00 -350.44 Section at lower edge -167,32 Mesh size = 0,25 m

⇒ Torsion moment mxy

 $\label{eq:combination} \mbox{Combination} = \mbox{ULS}; \mbox{Type forces} = \mbox{Basic magnitudes}; \mbox{Envelope} = \mbox{Maximum}; \mbox{Values} = \mbox{m}_{\mbox{xy}}$

Section at lower edge

Conclusion: Kirchhoff gives the expected shear force values, Mindlin gives the expected torsion moments.

2.4.3. Concrete setups

GENERAL SETUPS

⇒ Setup 1: National Determined parameters

File \rightarrow Project settings \rightarrow National annex [...] \rightarrow EN 1992-1-1 [...]

OR

Click on the flag at the top right of SCIA Engineer \rightarrow Manage annexes \rightarrow EN 1992-1-1 [...]

⇒ Setup 2: Concrete settings

Concrete menu → Concrete settings

ws: Complete setup 🔹 View sett 👻 Load defau	lt Find						Nation	al annex:				
Description	Symbol	Value	Default	Unit	Chapter	Code	Struct	CheckT		Remark		
<all></all>	<all> \wp</all>	<all></all>	all> p		<all> \wp</all>	<all> D</all>	<all> 🔎</all>	<all> 🔎</all>				
▲ Design defaults												
Reinforcement												
Minimum cover												
▲ Solver setting												
⊿ General												
Limit value of unity check	Lim.check	1.0	1.0			Independe	All (Bea	Solver se				
Value of unity check for not calculated unity check	Ncal.check	3.0	3.0			Independe	All (Bea	Solver se				
The coefficient for calculation effective depth of cros	. Coeff _d	0.9	0.9			Independe	All (Bea	Solver se				
The coefficient for calculation inner lever arm	Coeffz	0.9	0.9			Independe	All (Bea	Solver se				
The coefficient for calculation force, where member	. Coeff _{com}	0.1	0.1			Independe	All (Bea	Solver se				
Creep and shrinkage									<<			
Age of concrete at the moment considered	t	18250.00	18250.00	day	3.1.4.B.1-2	EN 1992-1-1	All (Bea	Solver se				
Relative humidity	RH	50	50	%	3.1.4.B.1-2	EN 1992-1-1	All (Bea	Solver se				
Type input of creep coefficient	Type φ(t,to)	Auto	Auto		3.1.4(2)	EN 1992-1-1	All (Bea	Solver se				
Age of concrete at loading	t ₀	28.00	28.00	day	3.1.4(2),B1	EN 1992-1-1	All (Bea	Solver se				
Consider drying and autogenous shrinkage	Type ≈ _{cs} (t,ts	Auto	Auto		3.1.4(6)	EN 1992-1-1	All (Bea	Solver se				
Age of concrete at the beginning of drying shri	t _s	7.00	7.00	day	3.1.4(6),B2	EN 1992-1-1	All (Bea	Solver se				
▲ SLS												
Use effective modulus of concrete					7.1(2)	EN 1992-1-1	All (Bea	Solver se				
Default sway type												
Sway around y axis	Sway yy					Independe	All (Bea	Solver se				
Sway around z axis	Sway zz		~			Independe	All (Bea	Solver se				
Internal forces												

All of the adjustments made in one of the two general setups are valid for the **whole project**, except for the members to which 'Member data' are added.

MEMBER DATA

It is possible to **overwrite** the data from the general setups per 2D member, namely by means of Member data; see Concrete menu – Concrete 2D data.

On a plate with Member data appears a label, e.g. CMD1 (= Concrete member data). This label can be selected at any time to view or to adapt the data via the Properties menu. Since Member data are additional data, it is possible to copy them to other plates, via the edit menu > metadata > copy or via a right mouse click.

CMD CMD	×
Name CMD2D	^
2D member \$1	
Member type Plate	*
Design defaults	
 Solver setting 	
▲ General	
 Creep and shrinkage 	
Age of concrete at the moment considered [day] 18250.00	
Relative humidity [%] 50	
Type input of creep coefficient Auto	*
Age of concrete at loading [day] 28.00	
Consider drying and autogenous shrinkage Auto	*
Age of concrete at the beginning of drying shrinkage [day] 7.00	
▲ SLS	
Use effective modulus of concrete	
▲ Internal forces	
Shifting of moment curve to cover additional tensile force caus 🔽	
▲ Design As	
Plate, Wall, Shell(Plate), Shell(Wall), Deep Beam	~
	OK Cancel

2.4.4. ULS design

4 REINFORCEMENT DESIGN

⇒ Internal forces

Design menu \rightarrow Concrete 2D \rightarrow Internal forces

Basic (centroid) : the values shown here are exactly the same as in the Results menu; they are calculated by the FEM solver.

Design (centroid) : the values shown here are different from those in the Results menu.

- The design magnitudes in the **Results** menu are calculated by the **FEM** solver according to some simple formulas specified in EC-ENV.

- The design magnitudes in the **Concrete** menu are calculated by the **NEDIM** solver, where a much finer transformation procedure is implemented, based on the theory of Baumann.

These are the values that will be used for the SCIA Engineer reinforcement design.

Theory of Baumann:

1) Calculation of the lever arm.

The lever arm is necessary for the calculation of surface forces. Value z will be calculated in the direction of the angle of the first principal moment. The forces will be recalculated and a cross-section set will be created in this direction. The reinforcement will be designed for these recalculated forces and from the designed reinforcement the inner lever arm will be calculated.

Principal stresses and directions at both surfaces

$$\sigma_{I_{+}} = 0.48 \text{ MPa} \sigma_{II_{+}} = 0.11 \text{ MPa} \rightarrow \alpha_{z_{+}} = -5.86 \text{ °}$$

 $\sigma_{I_{+}} = -0.11 \text{ MPa} \sigma_{II_{+}} = -0.48 \text{ MPa} \rightarrow \alpha_{z_{+}} = -5.86 \text{ °}$
 $-> \text{ direction for calculation inner lever arm}$
 $\alpha_{z} = -5.86$
Recalculated forces to direction of inner lever arm
 $n_{z} = 0.0 \text{ m}_{z} = 4970.4$
 $f_{cd} = \frac{\alpha_{cc} \cdot f_{ck}}{\gamma_{c}} = \frac{1 \cdot 20 \cdot 10^{6}}{1.5} = 13.33 \text{ MPa}$
 $d = 210 \text{ mm}$
 $\eta = 1 - 0.5 \cdot \frac{\varepsilon_{c22}}{\varepsilon_{c02}} = 1 - 0.5 \cdot \frac{0.0018}{0.0035} = 0.75$
 $\beta = 1 - \frac{\frac{\varepsilon_{c02}^{2}}{2} - \frac{\varepsilon_{c2}^{2}}{2}}{2} = 1 - \frac{\frac{0.0035^{2}}{2} - \frac{0.0018^{2}}{2}}{0.0035^{2} - \frac{0.0018^{2}}{2}} = 0.389$
 $\xi_{bal} = \frac{\varepsilon_{cu2}}{\varepsilon_{cu2} + \frac{f_{yk}}{\gamma_{S} \cdot \xi_{s}}} = \frac{0.0035}{0.0035 + \frac{500}{1.15 \cdot 200000}} = 0.617$
 $x_{bal} = \xi_{bal} \cdot d = 0.617 \cdot 210 = 0.13$
 $n_{cbal} = -\xi_{bal} \cdot d \cdot b \cdot n \cdot f_{cd} = -0.617 \cdot 210 \cdot 1000 \cdot 0.75 \cdot 13.33 = -1295 \text{ kN/m}$
 $n_{z} = 0 \text{ kN/m} > n_{cbal} = -1295 \text{ kN/m} = > \text{ predominant tension}$
 $x = \frac{d}{2 \cdot \beta} \cdot \left(1 - \sqrt{1 - 4 \cdot \beta \cdot \frac{abs(m_{z}) - n_{z} \cdot (d - 0.5 \cdot h)}{1000 \cdot 0.21^{2} \cdot 0.75 \cdot 13.33}}\right) = 2 \text{ mm}$
 $z = d - \beta \cdot x = 210 - 0.389 \cdot 2 = 209 \text{ mm}$
 $z_{+} = 124 \text{ mm}$
 $z_{-} = 85 \text{ mm}$

If value z cannot be calculated it will be calculated according to formula: z = 0.9 * d

2) Calculation of normal forces at the surfaces of 2D element.

The inputted internal forces will be recalculated to both surfaces according the following formulas:

Lower surface
$n_{x-} = \frac{n_x}{2} + \frac{m_x}{z} = \frac{0}{2} + \frac{4.93}{0.209} = 23.6 \text{ kN/m}$
$n_{y-} = \frac{n_y}{2} + \frac{m_y}{z} = \frac{0}{2} + \frac{1.22}{0.209} = 5.8 \text{ kN/m}$
$n_{xy-} = \frac{n_{xy}}{2} + \frac{m_{xy}}{z} = \frac{0}{2} + \frac{-0.385}{0.209} = -1.8 \text{ kN/m}$
Upper surface
$n_{x+} = \frac{n_x}{2} - \frac{m_x}{z} = \frac{0}{2} - \frac{4.93}{0.209} = -23.6 \text{ kN/m}$
$n_{y+} = \frac{n_y}{2} - \frac{m_y}{z} = \frac{0}{2} - \frac{1.22}{0.209} = -5.8 \text{ kN/m}$
$n_{xy+} = \frac{n_{xy}}{2} - \frac{m_{xy}}{z} = \frac{0}{2} - \frac{-0.385}{0.209} = 1.8 \text{ kN/m}$

3) Calculation of principal forces at surfaces of 2D element.

The principal forces at both surfaces and the direction of the first principal force will be calculated according to the following formulas:

Lower surface
Principal forces at lower surface:

$$n_{I-} = \frac{n_{x-} + n_{y-}}{2} + \frac{1}{2} \cdot \sqrt{(n_{x-} - n_{y-})^2 + 4 \cdot n_{xy-}^2}$$

$$= \frac{23.6 + 5.8}{2} + \frac{1}{2} \cdot \sqrt{(23.6 - 5.8)^2 + 4 \cdot -1.8^2} = 23.8 \text{ kN/m}$$

$$n_{II-} = \frac{n_{x-} + n_{y-}}{2} - \frac{1}{2} \cdot \sqrt{(n_{x-} - n_{y-})^2 + 4 \cdot n_{xy-}^2}$$

$$= \frac{23.6 + 5.8}{2} - \frac{1}{2} \cdot \sqrt{(23.6 - 5.8)^2 + 4 \cdot -1.8^2} = 5.7 \text{ kN/m}$$
Direction of principal forces:

$$\alpha_{I-} = 0.5 \cdot \text{ArcTg}\left(\frac{2 \cdot n_{xy-}}{n_{x-} - n_{y-}}\right) = 0.5 \cdot \text{ArcTg}\left(\frac{2 \cdot -1.8}{23.6 - 5.8}\right) = -6^{\circ}$$

$$\begin{aligned} & \underbrace{\text{Upper surface}}_{\text{Principal forces at upper surface:}} \\ & n_{1+} = \frac{n_{x+} + n_{y+}}{2} + \frac{1}{2} \cdot \sqrt{\left(n_{x+} - n_{y+}\right)^2 + 4 \cdot n_{xy+}^2} \\ & = \frac{-23.6 + -5.8}{2} + \frac{1}{2} \cdot \sqrt{\left(-23.6 - -5.8\right)^2 + 4 \cdot 1.8^2} = -5.7 \text{ kN/m} \\ & n_{11+} = \frac{n_{x+} + n_{y+}}{2} - \frac{1}{2} \cdot \sqrt{\left(n_{x+} - n_{y+}\right)^2 + 4 \cdot n_{xy+}^2} \\ & = \frac{-23.6 + -5.8}{2} - \frac{1}{2} \cdot \sqrt{\left(-23.6 - -5.8\right)^2 + 4 \cdot 1.8^2} = -23.8 \text{ kN/m} \\ & \text{Direction of principal forces:} \\ & \alpha_{1+} = 0.5 \cdot \text{ArcTg}\left(\frac{2 \cdot n_{xy+}}{n_{x+} - n_{y+}}\right) - 90 = 0.5 \cdot \text{ArcTg}\left(\frac{2 \cdot 1.8}{-23.6 - -5.8}\right) - 90 = -96 \text{ }^\circ \end{aligned}$$

4) Recalculation of principal forces at both surfaces to inputted directions.

The recalculation of the principal forces to the inputted direction will be done separately for both surfaces by using Baumann's transformation formula.

Upper surface Angles for Baumann's transformation formula $\alpha_{1+} = \alpha_{inp,1+} - \alpha_{I+} = 0 - .96 = 96^{\circ}$ $\alpha_{2+} = \alpha_{inp,2+} - \alpha_{I+} = 90 - .96 = 186^{\circ}$ $\alpha_{3+} = \alpha_{con+} - \alpha_{I+} = 135 - .96 = 231^{\circ}$

5) Calculation of virtual forces at both surfaces to inputted directions.

The virtual forces are necessary to convert the pressure/tensile forces at the surface back to the center of the plate. The virtual force represents the equivalent force at the other side of the plate.

Upper surface Angles for Baumann's transformation formula $\alpha_{1-} = \alpha_{inp,1-} - \alpha_{1+} = 0 - -96 = 96^{\circ}$ $\alpha_{2-} = \alpha_{inp,2-} - \alpha_{I+} = 90 - -96 = 186^{\circ}$ $\alpha_{3-} = \alpha_{con+} - \alpha_{1+} = 135 - -96 = 231^{\circ}$ Recalculated virtual forces at upper surface (acc. to Baumann) $n_{I+} \cdot \sin(\alpha_{2-}) \cdot \sin(\alpha_{3-}) + n_{II+} \cdot \cos(\alpha_{2-}) \cdot \cos(\alpha_{3-})$ $n_{Edsvirt1+} =$ $\sin(\alpha_{2-} - \alpha_{1-}) \cdot \sin(\alpha_{3-} - \alpha_{1-})$ $=\frac{-5.7 \cdot \sin(186) \cdot \sin(231) + -23.8 \cdot \cos(186) \cdot \cos(231)}{2} = -21.7 \text{ kN/m}$ $\sin(186 - 96) \cdot \sin(231 - 96)$ $n_{Edsvirt2+} = \frac{n_{I+} \cdot \sin(\alpha_{3-}) \cdot \sin(\alpha_{1-}) + n_{II+} \cdot \cos(\alpha_{3-}) \cdot \cos(\alpha_{1-})}{\alpha_{1-}}$ $\sin(\alpha_{3-} - \alpha_{2-}) \cdot \sin(\alpha_{1-} - \alpha_{2-})$ $= \frac{-5.7 \cdot \sin(231) \cdot \sin(96) + -23.8 \cdot \cos(231) \cdot \cos(96)}{(231) \cdot \cos(96)} = -4.0 \text{ kN/m}$ $\sin(231 - 186) \cdot \sin(96 - 186)$ $n_{Edsvirt3+} = \frac{n_{I+} \cdot \sin(\alpha_{1-}) \cdot \sin(\alpha_{2-}) + n_{II+} \cdot \cos(\alpha_{1-}) \cdot \cos(\alpha_{2-})}{\sin(\alpha_{1-} - \alpha_{3-}) \cdot \sin(\alpha_{2-} - \alpha_{3-})}$ $= \frac{-5.7 \cdot \sin(96) \cdot \sin(186) + -23.8 \cdot \cos(96) \cdot \cos(186)}{\sin(96 - 231) \cdot \sin(186 - 231)} = -3.7 \text{ kN/m}$

6) Recalculation of forces at surfaces to center of gravity of cross-section.

Using the transformed dimensional forces and virtual forces the internal forces at the center of the plate can be calculated.

Lower surface Dimensional forces of lower surface transformed to centroid $n_{Ed1-} = n_{Eds1-} + n_{Edsvirt1+} = 25.4 + -21.7 = 3.7 \text{ kN/m}$ $m_{Ed1-} = n_{Eds1-} \cdot z_{-} - n_{Edsvirt1+} \cdot z_{+} = 25.4 \cdot 85 - -21.7 \cdot 124 = 4.9 \text{ kNm/m}$ $n_{Ed2-} = n_{Eds2-} + n_{Edsvirt2+} = 7.7 + -4.0 = 3.7 \text{ kN/m}$ $m_{Ed2-} = n_{Eds2-} \cdot z_{-} - n_{Edsvirt2+} \cdot z_{+} = 7.7 \cdot 85 - -4.0 \cdot 124 = 1.2 \text{ kNm/m}$ $n_{Ed3-} = n_{Eds3-} + n_{Edsvirt3+} = -3.7 + -3.7 = -7.4 \text{ kN/m}$ $m_{Ed3-} = n_{Eds3-} \cdot z_{-} - n_{Edsvirt3+} \cdot z_{+} = -3.7 \cdot 85 - -3.7 \cdot 124 = 0.1 \text{ kNm/m}$ Upper surface Dimensional forces of upper surface transformed to centroid $n_{Ed1+} = n_{Eds1+} + n_{Edsvirt1-} = -21.7 + 25.4 = 3.7 \text{ kN/m}$ $m_{Ed1+} = -n_{Eds1+} \cdot z_{+} + n_{Edsvirt1-} \cdot z_{-} = -21.7 \cdot 124 + 25.4 \cdot 85 = 4.9 \text{ kNm/m}$ $n_{Ed2+} = n_{Eds2+} + n_{Edsvirt2-} = -4.0 + 7.7 = 3.7 \text{ kN/m}$ $m_{Ed2+} = -n_{Eds2+} \cdot z_{+} + n_{Edsvirt2-} \cdot z_{-} = -4.0 \cdot 124 + 7.7 \cdot 85 = 1.2 \text{ kNm/m}$ $n_{Ed3+} = n_{Eds3+} + n_{Edsvirt3-} = -3.7 + -3.7 = -7.4 \text{ kN/m}$ $m_{Ed3+} = -n_{Eds3+} \cdot z_{+} + n_{Edsvirt3-} \cdot z_{-} = -3.7 \cdot 124 + -3.7 \cdot 85 = 0.1 \text{ kNm/m}$

The available values are: mEd,1+, mEd,2+, mEd,c+, mEd,1-, mEd,2-, mEd,c-, nEd,1+, nEd,2+, nEd,c+, nEd,1-, nEd,2-, nEd,c- and vEd. "+" and "-" stand for the design values at respectively the positive and the negative side of the local z-axis of the 2D member. "1" and "2" stand for the reinforcement directions, which are by default respectively the local x- and y- direction of the 2D member. (mEd,c+ and mEd,c- are the design moments that would have to be taken by the concrete, but they have no real significance for the reinforcement design.)

Combination = ULS; Type values = Design internal forces; Value = mEd,1+

Compare the result for this value mEd,1+ (Concrete menu) with the result for the equivalent value mxD+ (Result menu) shown on p.128.

Despite the different transformation procedures, the general image of the results will be similar for *orthogonal* reinforcement directions (acc. to the local x and y axes). The largest difference is caused by the shift rule that is only taken into account in the design magnitudes calculated by the NEDIM solver (values mEd,1 and mEd,2).

The <u>shift rule</u> takes into account the additional tensile force caused by the shear force by shifting the moment line by a distance a_i . a_i is determined as in the image below.

The shift rule is taken into account in the default concrete settings. You can deactivate this option in the concrete settings.

crete settings										- 0
s: Complete setup 👻 View sett 💌 Load default Find							Natio	nal annex: (
Description	Symbol	Value	Default	Unit	Chapter	Code	Structure	CheckTy	1	Remark
⊳ p	<all></all>	Q <all></all>	<all> D</all>	< P	<all> \wp</all>	<all> ρ</all>	<all> D</all>	<all> \wp</all>		
Design defaults										
Reinforcement										
Minimum cover										
Solver setting										
D General		-								
▲ Internal forces										1D: $a_i = Coeff_i \cdot d \cdot (\cot \theta - \cot \alpha) / 2$ 2D: $a_i = d$
Shear force reduction above supports					6.2.1(8)	EN 1992-1-1	Beam,Be	Solver set		
Moment reduction above supports					5.3.2.2 (4)	EN 1992-1-1	Beam,Be	Solver set		initi initi
Shifting of moment curve to cover additional tensile force caused by shear					9.2.1.3(2)	EN 1992-1-1	Beam,Ri	Solver set		
Geometric imperfection in ULS	e _{i,ULS}				5.2(2)	EN 1992-1-1	Column	Solver set		
Geometric imperfection in SLS	e _{i,SLS}				5.2(3)	EN 1992-1-1	Column	Solver set	<<	
Minimum eccentricity	e _{min}	In first order	In first or		6.1(4)	EN 1992-1-1	Column	Solver set		If the check box is ON, the additional tens
First order eccentricity with the equivalent moment			~		5.8.8.2(2)	EN 1992-1-1	Column	Solver set		force caused by the shear force is taken
Second order eccentricity	e2				5.8.8	EN 1992-1-1	Column	Solver set		into account using the shift rule
Internal forces modifications			_							
Design As										
Conversion to rebars										
Interaction diagram			-							
Shear										
b Torsion										
Punching			-	-						
Stress limitations										
D Cracking forces										

If we uncheck this option the general image of mEd,1+ is closer to the one obtained for mxD+ (page 128).

⇒ Provided reinforcement

Before calculating the theoretical reinforcement it is possible to add a template of reinforcement to your plate(s). This template can be used to:

- Compare the template with the calculated theoretical reinforcement. By doing this it is easy to see where this basic template is not sufficient.
- Perform the punching design, Crack width check and the code dependent deflections.

The reinforcement added by the template is called **Provided reinforcement**.

To add **Provided reinforcement** go to Concrete menu → Concrete settings → Design defaults

ws: Complete setup View sett View sett Find										Nation	al annex:
Description		Symbol		Value	Defaul	t	Unit	Chapter	Code	Struct	CheckT
<all></all>	P	<all></all>	P	<all></all>	<all></all>	P		<all> 🔎</all>	<all> \wp</all>	<all> 🔎</all>	<all> D</all>
Design defaults											
A Reinforcement											
Beam / Rib											
Beam slab											
▶ Column											
⊿ Plate											
 Longitudinal 											
Design of provided reinforcement									Independe	Plate,S	Design d
Design template of provided reinforcement				Plate_Basic_Ad	Plate_E	3a			Independe	Plate,S	Design d
 Upper (z+) 											
Type of cover		Type _{c+}		Auto	Auto			4.4.1	EN 1992-1-1	Plate,S	Design d
Diameter of first layer		d _{s1+}		10.0	10.0		mm		EN 1992-1-1		· ·
Angle of first layer direction		α ₁₊		0.00	0.00		deg		EN 1992-1-1		0
Diameter of second layer		d _{s2+}		10.0	10.0		mm		EN 1992-1-1	Plate,S	Design d
Angle of second layer direction		α2+		90.00	90.00		deg		EN 1992-1-1	Plate,S	Design d
b Lower (z-)											
▲ Shear											
Diameter of shear reinforcement				8.0	8.0		mm		EN 1992-1-1		
Arrange perimeters of shear links automatically								9.4.3	EN 1992-1-1	Plate,S	Design d

Click on the 3 dots next to the 'Design template of provided reinforcement'. This opens a window with all the default templates.

You can select one of these templates, make a new one or edit one of the existing templates. Select the first template and click 'Edit'.

mber Plate, Shell(Plate)	· 🗙 •	Longitudinal							
de Standard	× [Definition of Ba	asic	By Dian	neti 👻				
			Bas	sic reinforcer	nent		Additional	reinforcement	
		Layer	Diameter	Spacing	Area	Туре	Diameter	Spacing	Area
			[mm]	[mm]	[mm^2/m]	-	[mm]	[mm]	[mm^2/m]
∆z		[1+]	10.0	200	393	List by spacing	10.0	0;100;150;200	0;785;524;393
		[2+]	10.0	200	393	List by spacing	10.0	0;100;150;200	0;785;524;393
		[1-]	10.0	150	524	Listby spacing	10.0	0;100;150;200	0;785;524;393
(+)		[2-]	10.0	150	524	List by spacing	10.0	0;100;150;200	0;785;524;393

In this window the reinforcement can be defined. There are 2 types of reinforcement in templates:

- **Basic reinforcement:** This type of reinforcement is added over the entire plate.
- Additional reinforcement: This type of reinforcement is only added in zones where, according to the
 calculated theoretical reinforcement, extra reinforcement is needed. You can define a single diameter
 and spacing as extra reinforcement. Or a list of reinforcement with either various diameters or various
 spacings.

Note:

- The diameter used for the Additional reinforcement is used also to perform the calculation of the theoretical required reinforcement.
- In the design defaults you can change the reinforcement directions. These directions are respected by as well the provided as the theoretical required reinforcement.

Com	plete setup 👻 View sett 💌 Load default Find										Nation	nal annex:
Descrip	ption		Symbol		Value	Defa	ult	Unit	Chapter	Code	Struct	CheckT
>		P	<all></all>	2	<all></all>	<all></all>	P		<all></all>	all> p	<all> D</all>	<all> D</all>
Design	defaults											
A Rei	inforcement											
Þ	Beam / Rib											
Þ	Beam slab											
Þ	Column											
	Plate											
	▲ Longitudinal											
	Design of provided reinforcement									Independe		
	Design template of provided reinforcement				Plate_Basic_Ad	Plate	Ba			Independe	Plate,S	Design d
	 Upper (z+) 											
	Type of cover		Type _{c+}		Auto	Auto			4.4.1	EN 1992-1-1		
	Diameter of first layer		d _{s1+}		10.0	10.0		mm		EN 1992-1-1		
	Angle of first layer direction		α ₁₊		0.00	0.00		deg		EN 1992-1-1		0
	Diameter of second layer		d _{s2+}		10.0	10.0		mm		EN 1992-1-1		
	Angle of second layer direction		α ₂₊		90.00	90.00		deg		EN 1992-1-1	Plate,S	Design d
	A Lower (z-)											
	Type of cover		Type _{c-}		Auto	Auto			4.4.1	EN 1992-1-1		
	Diameter of first layer		d _{s1-}		10.0	10.0		mm		EN 1992-1-1		
	Angle of firstlayer direction		α ₁₋		0.00	0.00		deg		EN 1992-1-1		
	Diameter of second layer		d _{s2-}		10.0	10.0		mm		EN 1992-1-1		
	Angle of second layer direction Shear		α ₂₋		90.00	90.00		deg		EN 1992-1-1	Plate,S	Design d

⇒ Theoretically

reinforcement

Concrete Menu→ ULS & SLS 2D Reinforcement design

In the menu Reinforcement design (ULS) you have 4 types of values:

- **Required:** These values represent the theoretical reinforcement calculated by SCIA Engineer. This takes into account the detailing provisions.

late, Shell(Plate)		-
Longitudinal		-
Check min. ratio of principal reinforcement		~
Type of the minimum tension principal reinforcement f		Auto
Type of the minimum tension principal reinforcement f		Auto
Check max. ratio of principal reinforcement		
Check min. transverse ratio of secondary reinforcement		
Check min. bar distance		
Minimal bar distance	slp.min	20
Check max.spacing of principal longitudinal reinforcemen	t	
Check max.spacing of secondary longitudinal reinforcem.		
Shear		-
Check min. ratio of shear reinforcement		
Check min. thickness of member with shear reinforcemen		
Min. thickness of member with shear reinforcement	h _{min}	200
Check max. spacing of shear links		
Max. spacing of shear links	Coeff _{smax.p.s}	0.8

As,req1+: Theoretical required reinforcement on the top side of the plate (positive z direction) in the first reinforcement direction. Taking into account the detailing provisions.

- **Required (statically):** These values represent the theoretical reinforcement calculated by SCIA Engineer without the detailing provisions taken into account.

As,stat1+: Theoretical required reinforcement on the top side of the plate (positive z direction) in the first reinforcement direction. **Without** taking into account the detailing provisions.

Required (additional): These values show if there is extra reinforcement needed on top of the provided reinforcement. Areas where this value is 0 are areas where no extra reinforcement is needed (compared to the provided reinforcement). Areas where these values are not 0 are areas where the provided reinforcement is not sufficient.

As,add,req1+: Theoretical additional required reinforcement on top of the provided reinforcement on the top side of the plate (positive z direction) in the first reinforcement direction.

- **Provided:** These values show you the provided reinforcement defined in the templates.

As,Prov1+: Provided reinforcement on the plate. If elements are red the additional reinforcement in the template is not sufficient.

⇒ Calculation of longitudinal reinforcement

The theoretical longitudinal reinforcement is calculated out of the design internal forces.

=> Calculation of shear reinforcement

Before calculating the shear reinforcement two checks are done:

V_{Ed} ≤ V_{Rd,max}: The design internal forces on the plate should be lower or equal to the maximum shear resistance of the plate.

$$v_{Rd,max} = \frac{\alpha_{cw} \cdot b_{w} \cdot z \cdot v_{1} \cdot f_{cd}}{\left(\operatorname{cotg}(\theta) + \operatorname{tg}(\theta) \right)}$$

- V_{Ed} < V_{Rdc}: If V_{Ed} is smaller than V_{Rdc} no shear reinforcement is required. If this is not the case punching shear reinforcement will be automatically calculated by SCIA Engineer.

$$\begin{split} v_{Rdc} &= max \left(10^{6} \cdot \left(C_{Rdc} \cdot k \cdot \left(100 \cdot \rho_{l} \cdot f_{ck} \right)^{\frac{1}{3}} + k_{1} \cdot \sigma_{cp} \right) \cdot d; 0 \right) \\ &= max \left(10^{6} \cdot \left(0.12 \cdot 1.98 \cdot \left(100 \cdot 4.58 \cdot 10^{-3} \cdot 25 \right)^{\frac{1}{3}} + 0.15 \cdot 0 \right) \cdot 0.21; 0 \right) = 112 \text{ kN/m} \\ v_{Rdcmin} &= max \left(10^{6} \cdot \left(v_{min} + k_{1} \cdot \sigma_{cp} \right) \cdot d; 0 \right) = max \left(10^{6} \cdot \left(0.486 + 0.15 \cdot 0 \right) \cdot 0.21; 0 \right) = 102 \text{ kN/m} \\ v_{Rdc} &= max \left(v_{Rdc}; v_{Rdcmin} \right) = max \left(112 \text{ kN/m}; 102 \text{ kN/m} \right) = 112 \text{ kN/m} \end{split}$$

Check shear capacity (without shear reinforcement)

When $V_{Ed} > V_{Rd,max}$ the following error appears in the output of the reinforcement design.

	Punching shear resistance at the column	Increase the column size or change plate
Warning	perimeter (vRd,max) is not sufficient acc. to	properties (use higher grade of concrete
	§6.4.3(2).	material or increase the thickness).

This error message is found at locations with high peak values for the shear stress. Most of the time these peak values are singularities, and do not occur in reality. You have roughly 2 options: you can just ignore the peaks or average them, for example by means of Averaging strips.

4 Practical reinforcement design

Next to theoretical required and provided reinforcement you have also practical or **User** reinforcement. This type of reinforcement can be added to the plate via the Concrete menu \rightarrow 2D Reinforcement.

This reinforcement is to be added separately at the upper and lower side, and in the different reinforcement directions.

Note: You can add multiple layers of practical reinforcement on the same area. The reinforcement added to this area is the sum of all these layers.

4 Combination Provided reinforcement and user reinforcement

After running the reinforcement design, it might be possible the provided reinforcement is insufficient in certain areas. This means the user should introduce some additional reinforcement. In this case the user can apply two different workflows:

(a) Define all the reinforcement as practical reinforcement;

(b) Combine the provided reinforcement and the practical reinforcement which will only be defined in the areas where it is necessary to define additional reinforcement.

This principle will be explained by using the following example for the ULS reinforcement design in **direction 1** or the local x-direction. Within the design defaults, the user can define a template for the provided reinforcement which can be used within the actual design. In this case the basic reinforcement will be set to **Ø10** à **150** and the addition reinforcement will be set to zero.

When running the ULS design for the value **As_prov,1-**, it can be seen the provided reinforcement of **Ø10** à **150** will be insufficient to withstand the acting loads. This indicates the application of additional reinforcement will be necessary.

When generating the value **As_add,req,1-**, the user can see the exact amount of reinforcement in mm2/m which needs to be added on top of the provided reinforcement. In this case an additional reinforcement of **578 mm2/m** will be necessary. This value can be translated into the configuration of **Ø10** à **100** as practical reinforcement.

This value can be translated into the configuration of **Ø10 à 100** as practical reinforcement. Since there is no required additional reinforcement in direction 2, only one direction of reinforcement will be added to the 2D member by using practical reinforcement as defined within the previous section.

Reinforcement 2D			×
		Name RR3 2D member Slab1	
/11/11/	A Reinforcement	2D member Stabi	
		Type Bars	*
		Material B 500A	۰
		Surface Lower	*
	Numb	er of directions 1	Y
ļ	Angle of first	direction [deg] 0.00	
1 I	Diar	meter (dl) [mm] 10.0	
• • •	Concrete cov	ver (cl,cu) [mm] 40	
cl		Offset [mm] 0	
si si ødi	Bar dis	tance (sl) [mm] 100	
	Reinf. a	area [mm^2/m] 785	
	Т	otal weight [kg] 359.44	
	▲ Geometry		
	Geom	etry defined by Polygon	*
	Actions		
			Load from setup >>>
			OK Cancel

When generating the results once more for the value As_prov,1- and activating the option 'Consider user reinforcement', it can be seen the user defined reinforcement of Ø10 à 100 is added on top of the basic reinforcement of Ø10 à 150 which is defined within the design defaults.

The applied values are visible within the preview of the reinforcement design.

	Basic	Basic Add		α	A _{s,min}	A _{s,ult}	ΔA _{s,serv}	A _{s,req}	A _{s,prov}	A _{s,max}	S _{min(cl)}	S _{max}	Status								
	Use	User	Auto	[°]		[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm]	[mm]									
[2+]	\$10/150			90.0	277	53		277	524	24 10000	58	60	OK								
AL 2548								0.11%	0.21%		≥37	<mark>≤4</mark> 00									
[1-]	<mark>¢10/150</mark>	φ10/150 φ10/100		0.0	291	1102	12220	1102	1309	10000	55	60	OK								
									0.44%	0.52%		≥37	≤400								
[2-]	φ10/150)					222	1222				90.0	277	70		277	524	10000	58	60	ОК
								0.11%	0.21%		≥37	≤400									

The option '**Consider user reinforcement**' is also accessible within all the reinforcement checks – crack width, punching and CDD. This allows the user to easily check the reinforcement introduced by both the template and the practical bars.

2.4.5. SLS Design of 2D members – Crack width and stress limitation

Next to the ULS design of 2D members the Eurocode defines some restrictions related to SLS design as well, more specifically the crack width and the limitation of the tensile stress in the reinforcement. Due to these SLS conditions the user might need to increase the amount of reinforcement which should be sufficient to withstand the acting ULS forces. The total amount of reinforcement to fulfill the conditions for both the ULS and SLS design can be calculated within SCIA as well as the increment of statically required reinforcement.

The principle of this design method will be explained by the following example of a 2D plate. On this member CMD will be applied in which the crack width in the first direction at the bottom surface will be limited to **0,100 mm**. The tensile stress in the reinforcement can be limited both within the design defaults and the CMD. In this example the limit will be set to **150 MPa**.

CMD	×
 Design As Plate, Wall, Shell(Plate), Shell(Wall), Deep Beam 	^
Coefficient for increasing the statically required area of reinforceme 0.00	
Coefficient for increasing the statically required area of reinforceme 0.00	
▲ Interaction diagram	
Interaction diagram method NRdMRd	~
▲ Shear	
Type calculation/input of angle of compression strut User(angle)	۷
Angle of compression strut [deg] 40.00	
Cotangent angle of compression strut 1.19175359259421	
Stress limitations	
Stress limit in the reinforcement User input	Y
Limit stress in reinforcement [MPa] 150.0	
Cracking forces	
Type of strength for calculation of cracking force f_{ctm}	*
Value of strength for calculation cracking force f_{ct,eff}	v
Crack width	
Type of maximal crack width User-defined for different surfaces	v
User defined crack width for upper surface [mm] 0.100	
User defined crack width for lower surface [mm] 0.100	~
Chapter : 7.3.1(5) Code : EN 1992-1-1 Remark : User defined crack width for lower surface w-	
	OK Cancel

St	ress limitations		
	Indirect load (imposed deformation)		
۲	Stress limit in the reinforcement	Auto 🔺	Auto
Cra	acking forces	Auto	
Cra	ack width	Yield strength User input	
De	Acctions	User Input	U

Since this design method is applicable for the ULS and SLS, it is important to select a result class which contains both ULS and SLS combination.

RESU	ILTS (1)
Name	Reinforcement design (ULS+SLS
 SELECTION 	
Type of selection	All \checkmark
Filter	No 🗸
RESULT CASE	
Type of load	Classes \vee
Class	All ULS+SLS \lor
Envelope (for 2D drawing)	Absolute extreme 🗸

The first step of the design procedure consists of the determination of **As_req** for the ULS state for each direction and each surface. During this step SCIA will determine two values, more specifically:

- (a) **As_ult:** the statically required reinforcement to withstand the ULS acting forces.
- (b) **As_req:** the required reinforcement including the detailing provisions from the EN.

When looking at the given example, it can be seen the required reinforcement **As_req,1-** is equal to **1614 mm2/m**. The statically required reinforcement **As_ult,1-** is equal to **1102 mm2/m**. This value is a bit lower since it does not contain the increment of longitudinal reinforcement due to the SLS design.

After the calculation of **As_ult** the user can choose to integrate the SLS restriction and has got three possibilities:

- Combination of the ULS and SLS design based on cracks.
- Combination of the ULS and SLS design based on stress limitation.
- Combination of the ULS and SLS design based on cracks and stress limitation.

This can be defined within the properties of the reinforcement design.

After activating these settings the increment of longitudinal reinforcement can be generated, in this case the value Δ **As_serv,1-**. SCIA will determine the principal forces **mEd,ch** and **mEd,QP** in order to calculate the appearance of cracks based on the designed ULS reinforcement **As_ult**. Next to the principal forces it is also necessary to calculate the amount of reinforcement in the direction of the principal forces.

Within the following step, SCIA will determine the maximum allowable crack width based on chapter 7.3.4 from EN 1992-1-1:2004 and compare it to the defined limit as shown below.

Principal stress <u>o₁[-]=-4.58°</u>	
$m_{Ed,char} = 65 \text{ kNm/m} n_{Ed,char} = 0 \text{ kN/m}$	
m _{Ed.qp} = 47 kNm/m n _{Ed.qp} = 0 kN/m Recalculation of required areas to direction of principal stress	
$A_{s,ult,\sigma} = A_{s,ult,1} \cdot \cos\left(\Delta\alpha_{1}\right)^{2} + A_{s,ult,2} \cdot \cos\left(\Delta\alpha_{2}\right)^{2}$	
$= 1102 \cdot \cos(-5)^{2} + 277 \cdot \cos(-95)^{2} = 1097 \text{ mm}^{2}$	
$A_{s,serv,\sigma} = A_{s,ult,\sigma} + \Delta A_{s,serv,1-} \cdot \cos\left(\Delta \alpha_{1-}\right)^2 + \Delta A_{s,serv,2-} \cdot \cos\left(\Delta \alpha_{2-}\right)^2$	
$= 1097 + 511 \cdot \cos(-5)^2 + 0 \cdot \cos(-95)^2 = 1605 \text{ mm}^2$	
Check of cracks occuring	(§7.1(2))
$f_{ct,eff} = 2.6 \text{ MPa}$	
σ_{ct} = 5.716 MPa > σ_{cr} = 2.6 MPa => cracks appear	
Check of reinforcement stress limitation	(§7.2(5))
σ _s = 149.3 MPa ≤ σ _{s.lim} = 150 MPa	
Effective tension area	(§7.3.2(3))
$h_{c,eff} = 64.4 \text{ mm} => A_{s,eff} = 1605 \text{ mm}^2 (\rho_{p,eff} = 2.49 \%)$	(31.3.2(3))
Calculation of crack width	(§7.3.4)
$s_{r,max} = k_3 \cdot c + \frac{k_1 \cdot k_2 \cdot k_4 \cdot \phi_{eq}}{\rho_{p,eff}} = 3.4 \cdot 0.03 + \frac{0.8 \cdot 0.5 \cdot 0.425 \cdot 0.01}{0.0249} = 170 \text{ mm}$	(7.11)
$\epsilon_{sm} \epsilon_{cm} = max \left(\frac{\sigma_{s} - k_{t} \cdot \left(\frac{f_{ct,eff}}{\rho_{p,eff}}\right) \cdot \left(1 + \alpha_{e} \cdot \rho_{p,eff}\right)}{E_{s}}, \frac{0.6 \cdot \sigma_{s}}{E_{s}} \right)$ $= max \left(\frac{149.3 - 0.46 \cdot \left(\frac{2.6}{0.0249}\right) \cdot \left(1 + 6.35 \cdot 0.0249\right)}{200000}, \frac{0.6 \cdot 149.3}{200000} \right) = 0.468 \%$	
w_k = $s_{r,max} \cdot \epsilon_{sm} \epsilon_{cm}$ = 170 mm \cdot 0.468 ‰ = 0.0797 mm Check of crack width	

If the cracks are within the limit, then **As ult** is sufficient to fulfill the restrictions for

w_k = 0.0797 mm ≤ w_{max} = 0.1 mm

If the cracks are within the limit, then **As_ult** is sufficient to fulfill the restrictions for both ULS and SLS. If not, then SCIA will start the iteration process to increase the **As,ult** by an extra amount of reinforcement to ensure the crack width is within the allowable limits. When looking at the table below it can be seen an additional amount of **1166 mm2/m** for the first direction at the bottom of the member should be added to the reinforcement **As_ult,1-**.

	Basic	Addi	Additional		A _{s,min}	A _{s,ult}	$\Delta A_{s,serv}$	A _{s,req}	A _{s.prov}	A _{s,max}	Smin(cl)	Smax	Status
		User Auto [°] [r	[mm ²]	[mm ²] [mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm]	[mm]			
[2+]	φ10/150			90.0	277	53	0	277	524	10000	58	60	OK
								0.11%	0.21%		≥37	≤400	
[1-]	φ10/150	φ10/100		0.0	291	1102	511	1613	1310	10000	55	60	Not OK
						C. C. C. C. C.		0.65%	0.52%		≥37	≤400	
[2-]	φ10/150			90.0	277	70	0	277	524	10000	58	60	ОК
								0.11%	0.21%		≥37	≤400	

When looking at the output for Δ **As_serv,1-** a value of **562 mm²/m** can be generated.

If this value of Δ **As_serv,1** will be added to the value of **As_ult,1-**, it will result in the value **As_req,1-**. In short the following summary can be created:

- **As_req,i,+/-:** Required reinforcement area for ULS and SLS including detailing provisions for the particular direction (1,2) and surface (+,-).
- As_ult,i,+/-: Statically required reinforcement based on ULS for particular direction (1,2) and surface (+,-).
- ΔAs_serv,i,+/-: Increment of statically required reinforcement based on SLS for particular direction (1,2) and surface (+,-).

The same procedure can be applied for the limitation of tensile stress within the reinforcement. In this case SCIA will determine the amount of reinforcement for the ULS and use this reinforcement to calculate the actual stresses in the reinforcement. This value will then be compared to the defined allowable limit. The limit can be defined in both the design defaults and CMD. The user has three possibilities to define the limit of the stresses:

- Auto: Based on definition in the national annexes 7.2(5).
- Yield Strength: the limit is determined based on fyk (Characteristic yield strength of reinforcement)
- **User input**: the limit must be decided by the user.

This can be checked within the output, in this case the user defined value of 150 MPa can be seen.

As previously mentioned when the SLS restrictions are not fulfilled an increment must be calculated **serv_coeff** will be calculated depending on the following conditions:

In case of crack width only: serv_{coeff}=w_{k,coeff}= (w_k / w_{k,max})^{0,5}+0,01

- In case of reinforcement stress only: serv_{coeff}=s_{s,coeff}= (s_s / s_{s,lim})+0,005
- In case of reinforcement stress only: serv_{coeff} = max(s_{s,coeff};w_{k,coeff})

When the statically reinforcement is designed based on ULS +SLS, the verification of the detailing provisions must be done. The same procedure and warnings as used for ULS design will be applied for ULS+SLS design, only one step further. The final reinforcement area As_req for direction (1,2) and surface (+,-) will be determined by the following formula, taking into account the minimal and maximal areas from detailing provisions:

 $A_{s,req,1,2,\pm} = min (max(A_{s,ult,1,2,\pm}; A_{s,serv,1,2,\pm}; A_{s,min}); A_{s,max})$

2.4.6. Crack control

INPUT DATA FOR CRACK CONTROL

⇒ Maximum crack width

The values of the maximum crack width (w_{max}) are national determined parameters, dependent on the chosen exposure class. Therefore, this value can be found in the setup for National Determined Parameters, via the File menu \rightarrow Project settings \rightarrow National annex [...] \rightarrow EN 1992-1-1 [...].

Concrete setup			×
 Type of values NA building Type of functionality Hollow core beams Prestressing 	EC-EN General Gen	Name EC-EN Concrete General ULS SIS General National annex Ka,crack - coefficient for calculation ma Value [-] 3.40 Ka,crack - coefficient for calculation ma Value [-] 0.42 Wmax - for non-prestressed structure : Values [mm] 0.4/0.3/0.3 Detailing provisions	
Select all Unselect all	Refresh	Load default NA parameters	OK Cancel

⇒ Type of used reinforcement

You can perform the Crack width check for all three types of reinforcement (Required, provided and user reinforcement). The crack width check is performed on a Quasi permanent SLS combination.

If the type of reinforcement used for the crack width check is either the provided or required reinforcement an ULS combination should be chosen as well. This is necessary because the required/provided reinforcement is calculated based on an ULS combination. After this reinforcement is calculated it can be used to perform the crack width check. All this is done automatically and can be set in the properties window of the crack width check.

Required/provided reinforcement

User reinforcement

⇒ Theoretical background

Crack appearance

If condition below is satisfied no cracks will appear in the concrete.

$$\sigma_{ct,max\pm} \leq f_{ct,eff}$$

With:

 $\sigma_{ct,max\pm} = \frac{n_{i\pm}}{A_{i,i\pm}} + \frac{m_{i\pm}}{I_{i,i\pm}} \cdot z_{t,max,i\pm} =$ Normal concrete stress on un-cracked section at the most tensioned fiber of concrete cross-section

 $f_{ct,eff}$ = The mean value of the tensile strength of the concrete effective at the time

Calculation of crack width

$$w = \varepsilon_{\rm sm_cm} \cdot s_{\rm r,max}$$

With:

$$(\varepsilon_{sm} - \varepsilon_{cm})_{i\pm} = \max\left[\frac{\sigma_{s,i\pm} - k_t \cdot \frac{f_{ct,eff}}{\rho_{p,eff,i\pm}} \cdot \left(1 + \alpha_{e,i\pm} \cdot \rho_{p,eff,i\pm}\right)}{E_{s,i\pm}}; 0, 6 \cdot \frac{\sigma_{s,i\pm}}{E_{s,i\pm}}\right]$$

& RESULTS FOR REQUIRED THEORITICAL REINFORCEMENT

Desing menu \rightarrow Concrete 2D \rightarrow SLS crack width

Crack width w+

Combination = SLS; Type of reinforcement = Required; Value = w+

Crack width w-

Combination = SLS; Type of reinforcement = Required; Value = w-

Unity check Combination = SLS; Type of reinforcement = Required; Value = **UC**

A green value stands for a Unity check ≤ 1 ($w_{calc} \leq w_{max}$), a grey value stands for Unity check ≤ 0.25 and a red value means that w_{max} is exceeded.

2.5. Punching

2.5.1. Theoretical background

General

Punching shear can result from a concentrated load or reaction acting on a relatively small area, called the loaded area Aload of a slab or a foundation.

The most common situations where punching shear has to be considered is the region immediately surrounding a column in a flat ceiling plate or where column is supported on foundation plate.

The following problem types can be distinguished: interior, edge and corner columns.

Design of punching shear reinforcement is based on clause 6.4 of EN 1992-1-1: 2004 / A1:2014 + National Annexes.

The verification reveals either that the load-bearing capacity of the reinforced concrete is sufficiently high, or that punching shear reinforcement must be designed and installed. If the verification limits are exceeded, the verification result is marked as not permissible. In this case, the user must change the model parameters or select a suitable design alternative.

The verification of punching failure at the ultimate limit state can be resumed as follows:

- Check of the shear resistance at the face of the column noted u₀, and at the basic control perimeter named u₁.
- If shear reinforcement is required, a further perimeter u_{out,ef} should be found where shear reinforcement is no longer required.

Those control perimeters are shown in the following pictures:

Load distribution and basic control perimeter

⇒ Basic control perimeter u1

The basic control perimeter u1 is taken at a distance 2d from the loaded area, where d is the effective depth.

In case the loaded area is close to an edge or a corner:

In case there is openings near the loaded area, they are dealt with according to clause 6.4.2(3).

If the shortest distance between the perimeter of the loaded area and the edge of the opening does not exceed 6d (see figure), part of the control perimeter contained between two tangents drawn to the outline of the opening from the center of the loaded area is ineffective.

In SCIA Engineer, openings inputted in the Structure menu are automatically considered according to the previous criteria.

⇒ Effective depth d_{eff}

The effective depth of the slab, is assumed constant and is calculated according to formula 6.32 from EN1992-1-1:

$$d_{eff} = \frac{(d_y + d_z)}{2}$$

where d_y and d_z are the effective depths of the reinforcement in two orthogonal directions.

4 Punching shear calculation

The punching shear calculation is done according to EN1992-1-1 art.6.4.3.

First the design shear resistances along the control sections are calculated:

- v_{Rd,c} design value of the shear resistance of a slab *without* punching shear reinforcement along the control section considered
- v_{Rd,cs} design value of the punching shear resistance of a slab *with* punching shear reinforcement along the control section considered
- v_{Rd,max} design value of the *maximum* punching shear resistance along the control section considered

Then the following checks should be performed.

⇒ Check at the column perimeter u₀

At the column perimeter u_{o} , or at the perimeter of the loaded area, the maximum punching shear stress should not be exceeded.

With :

 $\begin{array}{ll} v_{Ed0} & \mbox{design shear stress at the column perimeter } u_0 \\ v_{Rd,max} & = 0.5 \ ^* v \ ^* f_{cd} \\ v & = 0.6^* (1 \ - \ f_{ck} / 250) \end{array}$

⇒ Check at the basic perimeter u₁

At the basic control perimeter u1:

• If $v_{Ed} \le v_{Rd,c}$ Punching reinforcement is not needed

• If $v_{Fd} > v_{Rdc}$ Punching reinforcement is needed

The punching shear resistance of a plate $V_{Rd,c}$ is calculated according to formula 6.47, EN1992-1-1:

$$V_{\text{Rd,c}} = C_{\text{Rd,c}} \cdot k. (100. \rho_{\text{l}}. f_{\text{ck}})^{1/3} + k_1 \sigma_{\text{cp}} \ge (v_{\min} + k_1 \sigma_{\text{cp}})^{1/3}$$

With:

 $\begin{array}{ll} \rho_l & \mbox{average reinforcement ratio in specific distance around column} \\ f_{ck} & \mbox{characteristic concrete compressive strength in MPa} \\ v_{min} & = 0.035 \cdot k^{3/2} \cdot f_{ck}^{1/2} \\ C_{Rd,c} & \mbox{0.10} \end{array}$

$$C_{Rd,c} = \frac{0,18}{\gamma_c}$$

k

$$k = 1 + \sqrt{\frac{200}{d}} \le 2,0$$

d in mm

The maximum shear stress v_{Ed} is calculated for considered control perimeter u_i according to clause 6.4.3(1) as follows:

$$v_{Ed} = \beta . \frac{V_{Ed}}{u_i d}$$

The β -factor is to consider the non-uniform load transfer (due to unbalanced bending moment). If the load transfer is non-uniform, local peak loading should be compensated by help of this β -factor.

In case that lateral stability of the structure does not depend on frame action between the slabs and the columns, and where the adjacent spans do not differ in length by more than 25%, approximate values for β may be used according to clause 6.4.3(6).

In SCIA Engineer, the user must decide whether these approximate values can be used, because the program cannot check the preconditions described above.

By default, the recommended approximated values are:

Those values might be different according to the National Annexes and can be viewed in the National Annexes setup:

Concrete setup			×
 Concrete setup Type of members D 2D Type of values NA building Type of functionality Hollow core beams 	Standard EN Concrete Concrete Concrete Non-prestressed reinforcement Durability and concrete cover CUS General Bunching	General Punching National annex CRd,o Value [-] 0.18 k1 - factor considering effects of axial load Value [-] 0.10	×
Prestressing 🗹	SLS General Prestressing Allowable stress Stress limitation during tensioning SLS stress limitation Detailing provisions Columns Beams Beams 20 structures and slabs Punching	v _{min} - min. value of shear resistance Formula Formula v _{Rd,max} - design value of max. shear resista Formula Formula v _{Rd,max} - design value of max. shear resista Formula Formula Formula Formula Formula Formula Formul	
Select all Unselect all	< > Refresh	Value [-] 1.50 Value [-] 1.50 Value [-] 1.50 Value [-] 1.50 Value [-] 1.50 Value [-] 1.50 Label Stress Detailing provisions	v

Otherwise, as described in art 6.4.3, the β -factor can be calculated by the following general formula:

$$\beta = 1 + \sqrt{\left(k_y.\frac{M_{Ed,y}}{V_{Ed}}.\frac{u_1}{W_{1y}}\right)^2 + \left(k_z.\frac{M_{Ed,z}}{V_{Ed}}.\frac{u_1}{W_{1z}}\right)^2}$$

Calculation of β -factor with general formula can be set in Concrete setup > Punching:

ws:	C	ompl	ete setup 💌 View settings 💌 Load defa	ult	Find					Nationa	al annex: 🏼 🏹	
De	esc	riptic	on	Symbol	Value	Default	Unit	Chapter	Code	Structu	CheckT	
all>			Q	<all></all>	all>	<all> D</all>	< <i>P</i>	<all></all>	<all></all>	<all> D</all>	<all></all>	
V		esigi										
⊳	С	onve	ersion to rebars									
⊳	Ir	ntera	ction diagram									
⊳	s	hear										
· · ·	Torsion											
	Ρ	unch	Inching									
	-	Sh	ear stress calculation									
		Þ	Type of Beta factor	Туре β	Approximat 🔺	Approxim		6.4.3(3-6)	EN 1992-1-1	Plate	Solver se	
			Reduction of shear stress by soil pressure		Approximate			6.4.4(2)	EN 1992-1-1	. Plate	Solver se	>
	4	Co	ontrol perimeter		Formula (DIN I	N)						
			Distance of control perimeter for ceiling plate	coeff k _{u1.cei}	2.00	2.00	-	6.4.2(1)	EN 1992-1-1	Plate	Solver se	
			Distance of control perimeter for foundation plate	coeff ku1.fou	2.00	1.00	-	6.4.2(1)	EN 1992-1-1	Plate	Solver se	
			Distance from column face to consider openings	coeff k _{open}	6.00	6.00	-	6.4.2(3)	EN 1992-1-1	Plate	Solver se	
			Distance from column face to collect input data abo	coeff k _{reinf}	3.00	3.00	-	6.4.4(1)	EN 1992-1-1	Plate	Solver se	
⊳	s	tress	limitations									
⊳	с	rack	ing forces									
⊳			width									
⊳	D	eflec	tions									
Þ	Б	etail	ling provisions		-						I	

⇒ Design of punching reinforcement if required

In case that v_{Ed} > $v_{Rd,c}$, punching reinforcement should be designed.

If punching reinforcement is required, the outer control perimeter u_{out} beyond which the reinforcement is no longer needed is calculated acc. to clause 6.4.5(4):

$$u_{out,ef} = \frac{\beta. V_{Ed}}{v_{Rd.c}. d}$$

Calculation of the required punching reinforcement

In SCIA Engineer, the shear reinforcement is designed using the following assumptions:

- the distribution of the shear links is considered as radial only
 - only vertical shear links are supported
- the shape of reinforcement perimeters around the column is the same as for the shape of the basic control perimeter

The required area A_{sw,req} of one perimeter of shear reinforcement around the column assumed as radially distributed vertical shear links is calculated as:

$$A_{sw,req} = \frac{(v_{Ed,u1} - 0.75 \cdot v_{Rd,c}) \cdot u_1 \cdot s_r}{1.5 \cdot f_{vwd,ef}}$$

 $\begin{array}{l} f_{ywd,ef} & effective \ design \ strength \ of \ the \ punching \ reinforcement \ acc. \ to \ formula: \\ f_{ywd,ef} = 200 + 0.25 \cdot d_{eff} \leq f_{ywd} \end{array}$

Detailing provisions for the punching reinforcement

The required area might be adjusted to fulfil detailing provision rules acc. to clause 9.4.3(1), so that number of shear links n_s per each reinforcement perimeter is:

$$n_{s} = \max \{ \frac{4 \cdot A_{sw,req}}{\pi \cdot d_{s}^{2}}; \frac{u_{1,last}}{s_{t,max,u1}}; \frac{u_{s,last}}{s_{t,max,out}} \}$$

ds diameter of shear link

 $\frac{u_{1,last}}{s_{t,max,u1}}$ condition of maximum allowed tangential spacing of links of reinforcement perimeters placed within the

basic control perimeter ($u_{1,last}$ is length of last perimeter of shear reinforcement there) $u_{s,last}$ by the set of the set

 $\frac{u_{s,last}}{s_{t,max,out}}$ condition of maximum allowed tangential spacing of links of reinforcement perimeters placed outside

the basic control perimeter $(u_{s,last}$ is length of last perimeter of shear reinforcement there)

In SCIA Engineer, limitation of spacing $s_{t,max,u1}$ and $s_{t,max,out}$ are set in Concrete setup > Detailing provisions > Punching:

ews:	Co	mplete setup 👻 View settings 💌 Load defa	ult	Find					Nationa	il annex: 🔣	
De	scri	iption	Symbol	Value	Default	Unit	Chapter	Code	Structu	CheckT	
all>		Q	<all></all>	<all></all>	<all></all>	Q>C	<all> ₽</all>	🛛 <all> 🔎</all>	<all> \wp</all>	<all> 🔎</all>	
Þ	Cr	ack width									
⊳	De	flections									
	De	tailing provisions									
	⊳	Beam / Rib		-							
	Þ	Beam slab		-							
	⊳	Column		-							
	⊳	Plate, Shell(Plate)		-							
	Þ	Wall, Shell(Wall)		•							1.
	⊳	Deep beam		-							ſ
		Punching									
		Check min. shear reinforcement		Image: A start of the start			9.4.3(2)	EN 1992-1-1	Plate	Solver se	
		Check distance of the first perimeter of shear links		Image: A start and a start			9.4.3(1,4)	EN 1992-1-1	Plate	Solver se	
		Min. distance from column face	coeff s _{0,min}	0.30	0.30	-	9.4.3(1)	EN 1992-1-1	Plate	Solver se	
		Max. distance from column face	coeff s _{0,max}	0.50	0.50	-	9.4.3(4)	EN 1992-1-1	Plate	Solver se	
		Check max. radial spacing of shear links		~			9.4.3(1)	EN 1992-1-1	Plate	Solver se	
		Max. spacing of shear links	coeff s _{r.max}	0.75	0.75	-	9.4.3(1)	EN 1992-1-1	Plate	Solver se	
		Check max. tangential spacing of shear links		Image: A start of the start	Image: A start and a start		9.4.3(1)	EN 1992-1-1	Plate	Solver se	
		Max. tangential spacing within the first control peri	coeff s _{t,max,u}	1.50	1.50	-	9.4.3(1)	EN 1992-1-1	Plate	Solver se	
		Max. tangential spacing outside the first control per	coeff st, max, o	2.00	2.00	-	9.4.3(1)	EN 1992-1-1	Plate	Solver se	
		Check minimum number of perimeters of shear links					9.4.3(1)	EN 1992-1-1	Plate	Solver se	
		Min. number of perimeters of shear links	n _{per.min}	2	2		9.4.3(1)	EN 1992-1-1	Plate	Solver se	

The last condition, which must be fulfilled acc. to clause 9.4.3(2) is minimum reinforcement area of single shear link $A_{sw1,min}$ acc. to formula (9.11) :

$$A_{sw1,min} = \frac{0.08 \cdot \sqrt{f_{ck} / f_{ywk}} \cdot s_r \cdot s_t}{1.5}$$

With :

s_r spacing of shear links in the radial direction

st spacing of shear links in the tangential direction

The final designed area of each perimeter of shear reinforcement around the column is :

$$A_{sw} = \frac{n_s * \pi * d_s^2}{4} \ge n_s * A_{sw1,min}$$

The required number of shear reinforcement perimeters around columns, n_{per} , is determined based on clause 6.4.5(4), which specifies that the outermost perimeter of shear reinforcement, $a_{s, last} = s_0 + s_r * n_{per}$, should be placed at a distance not greater than $k_{out} * d_{eff}$ within u_{out} . The following formula for n_{per} is derived :

$$n_{\text{per}} = \left[\frac{a_{\text{out}} - s_0 - k_{\text{out}} * d_{\text{eff}}}{s_r} + 1\right] \ge n_{\text{per,min}}$$

With :

- Kout Coefficient to determine the maximum distance of last perimeter from uout. Default value is 1,5. This is a National Annexes parameter.
- N_{per,min} Minimum number of reinforcement perimeters around column required acc. to clause 9.4.3(1). Default value is 2 in Concrete settings > Complete setup view > Detailing provisions > Punching.
- A_{out} Distance of the outer perimeter u_{out}.

The total amount of shear reinforcement $A_{sw,tot}$ around the column is then calculated as : $A_{sw,tot} = n_{per} * A_{sw}$

2.5.2. Punching design

Configuration

The punching check in SCIA Engineer is only available when a real column or a nodal support have been connected to a plate. No punching check can be performed for a point load or a little surface load applied to the plate.

SCIA Engineer supports circular and rectangular cross sections only for the punching check.

The column position with regard to the edges of the plate and the openings is recognize. Also, for the punching check, all edges and angles of the plate are taken as straight... so if they are not in your model, the program makes an approximation.

SCIA Engineer doesn't support all punching cases of column-plate connection. The list of all current limitations can be found in our webhelp. Each unsupported configuration is mentioned in the list of Errors/warning/notes of the report in the punching check report.

Summar	у	-											
Name	Case	Punching case	Punching shape	UCvRd,n [-]	nax (UCvRd,c [-]		Shear inforcement perimeters	UCvr t [-]		UCAsw,det [-]	UC [-] Check	Errors, warnings, notes
N61	ULS/1	N/A	N/A	3.	.00	3.00	N/A	A	-		-	3.00 NOT OK	W6/131
N63	ULS/1	N/A	N/A	3.	.00	3.00	N/#	ł	-		-	3.00 NOT OK	W6/124
Concrete	e												
Name	Case	Punching case	Punching shape	V _{Ed} [kN] β [-]	M _{Ed,y} [kNm M _{Ed,i} [kNm	n] h z [mr		Material f _{cd} [MPa]	d _{eff} [mm] βι [%]	Ատ [m] Ալ] [MPa] VEd,u1	V _{Rd,max} [MPa] V _{Rd,c} [MPa]	UC _{vRd,max} [-] UC _{vRd,c} [-]
N61	ULS/1	N/A	N/A		-	N/A		N/A	-	-	-	-	3.00 3.00
N63	ULS/1	N/A	N/A		-	N/A -		N/A -	-	-	-	-	3.00 3.00
E/W/N Present on members 5.00 W6/131 N61 W6/124 N63													
E/W/N Description Solution W6/131 Node cannot be calculated for punching. The connected column has not supported type of cross-section. Solution													
W6/124		cannot be calo n goes throug	ulated for pur h the plate.	nching. T	he cor	nnected		lit the colum ove and belo			to get a sep	arate colui	mn

Choice of reinforcement

The punching design will check if the longitudinal reinforcement As in the plate is sufficient to resist to the shear force around a column-plate or nodal support-plate connection.

In SCIA Engineer the user can choose between 3 types of reinforcement for the punching check/design:

- As, required calculated by the software for a specific load combination
- As,provided user set in Reinforcement design > Design defaults
- As,user practical reinforcement inputted by user manually in 2D Reinforcement

The choice between As, required, As, provided or As, user is done in the Properties window for Punching design:

RESUL	TS (1)	5
Name	Pons ontwerp	
SELECTION		
Type of selection	Current \checkmark	
Filter	No 🗸	
RESULT CASE		
Type of load	Combinations \vee	
Combination	ULS V	
REINFORCEMENT		
Type of reinforcement	Required	Y
LIMIT STATE CONDITION	Required	
Design ULS	Provided	
Averaging of peak	User	_
Location	In nodes avg. 🗸	
System	LCS mesh element 🗸	
EXTREME		
Extreme	Global 🗸	
Values	UC V	

Punching check

Studied example: punching.esa

Geometry: Concrete class C30/37 Reinforcement class B500B Plate thickness 200 mm Column cross-section 10 x R 300x300 mm² and 6 x circular C400 mm²

Plate and columns are connected to each other by means of the action Connect members/nodes.

Loading: *Load cases SW: Self weight DL: Dead Load = Surface load -1 kN/m² + Line force on edges -1 kN/m LL: Live Load = Surface load -1 kN/m² LL1: Additional case for further study= -25 kN/m², to be explained later

*Combinations ULS (Type EN – ULS (STR/GEO Set B)) = SW, DL, LL SLS (Type EN – SLS Quasi Permanent) = SW, DL, LL

Work method

The Punching Design command can be selected in the main menu "Design":

The command is available, when EC - EN national code is selected in Project data and the linear or non-linear static analysis is done for the model containing 2D members from concrete material. Once the command is selected, appropriate parameters are listed and can be adjusted in property window with following options:

• Set the type of Selection to ALL, the Type of load to Combination ULS and the type of Reinforcement to Required then click "Refresh"

You will notice that the UC for every node will be displayed along with the control parameter in colour. In total there are 3 colours (Green, blue and red).

- Green: Shear capacity <u>without</u> reinforcement is sufficient (UC_{vRd,c} ≤ 1.0 and UC_{vRd,max} ≤ 1.0)
- Blue: Shear capacity with shear reinforcement is sufficient (UC_{vRd,c} > 1.0 but UC_{vRd,cs} ≤ 1.0)
- Red: Plate is not designable by application of reinforcement or maximum shear capacity of concrete adjacent to the column is not sufficient (UC_{vRd,cs} > 1.0 or UC_{vRd,max} > 1.0)

• Presentation of results as a numerical output is possible via Preview and / or Table results. For the Punching Design, there is available two types of output:

-	Brief - contains	just a summar	y table with basic results
---	------------------	---------------	----------------------------

Selection:	A								
Summar						_			
Name	Case	Punching case	Punching shape	UC _{vRd,max} [-]	UC _{vRd,c} [-]	Shear reinforcement perimeters	UC _{vRd,cs} [-]	UC _{Asw,det} [-]	UC [-] Check
N15	ULS/1	Corner column	Rectangle (300;300)	0.82	0.96	not required	-	-	0.96 OK
N20	ULS/1	Corner column	Rectangle (300;300)	0.86	1.01	3x 9Ø8(radial) 80+2x80=240	0.68	1.00	1.00 OK, BUT
N53	ULS/1	Internal column	Circle (400)	0.37	1.07	3x 12Ø8(radial) 80+2x80=240	0.72	1.00	1.00 OK, BUT
N55	ULS/1	Internal column	Circle (400)	0.12	0.37	not required	-	-	0.37 OK
N57	ULS/1	Internal column	Circle (400)	0.37	1.07	3x 12Ø8(radial) 80+2x80=240	0.72	1.00	1.00 OK, BUT
N59	ULS/1	Internal column	Circle (400)	0.36	1.06	3x 12Ø8(radial) 80+2x80=240	0.71	1.00	1.00 OK, BUT
N61	ULS/1	Internal column	Circle (400)	0.17	0.52	not required	-	-	0.52 OK
N63	ULS/1	Internal column	Circle (400)	0.37	1.08	3x 12Ø8(radial) 80+2x80=240	0.72	1.00	1.00 OK, BUT
N88	ULS/1	Edge column	Rectangle (300:300)	0.43	0.98	not required	-	-	0.98 OK
N90	ULS/1	Edge column	Rectangle (300;300)	0.43	0.98	not required	-	-	0.98 OK
N95	ULS/1	Corner column	Rectangle (300;300)	0.21	0.44	not required	-	-	0.44 OK, BUT
N97	ULS/1	Edge column	Rectangle (300;300)	0.42	0.97	not required	-	-	0.97 OK
N99	ULS/1	Edge column	Rectangle (300;300)	0.42	0.97	not required	-	-	0.97 OK
N101	ULS/1	Corner column	Rectangle (300;300)	0.25	0.52	not required	-	-	0.52 OK, BUT

- Standard - contains the same summary table as in Brief output supplemented by additional tables providing further semi-results

⇒ Shear capacity without reinforcement is sufficient

Select Node N61 and change the type of selection to current. A brief output will show:

Punching design									
Linear ca Combinat Extreme: Selection: Summar	ion: ULS Node N61								
Name	Case	Punching case	Punching shape	UC _{vRd,max} [-]	UC _{vRd,c} [-]	Shear reinforcement perimeters	UC _{vRd,cs} [-]	UC Asw,det [-]	UC [-] Check
N61	ULS/1	Internal column	Circle (400)	0.17	0.52	not required	-	-	0.52 OK
Name		Combination	key						

We can see that the UC < 1, let's look at the standard output for this node:

Puncl	hing d	lesign										
Linear ca Combinat Extreme: Selection: Summar	ion: ULS Node N61											
Name	Case	Punching case	Punching shape	UC _{vRd,ma} [-]	x UC _{vRd}	reir	Shear forcement rimeters	UC vRd,cs [-]	UC _{As}]	UC [-] neck	
N61	ULS/1	Internal column	Circle (400)	0.1	.7 0.	52 not r		-	-	0.5 OK	_	
Concret	e											
Name	Case	Punching case β [-]	Punching shape	V _{Ed} [kN] ΔV _{Ed} [kN]	M _{Ed,y} [kNm] M _{Ed,z} [kNm]	Plate h [mm]	Material f∝ [MPa]	d _{eff} [mm] ρι [%]	u₀ [m] u₁ [m]	V _{Ed,u0} [MPa] V _{Ed,u1} [MPa]	V _{Rd,max} [MPa] V _{Rd,c} [MPa]	UC _{vRd,max} [-] UC _{vRd,c} [-]
N61	ULS/1	Internal column 1.15	Circle (400)	128.46 0.00	0.09 13.98		C30/37 20.00	160.00 0.17	1.257 3.267	0.73 0.28	4.22 0.55	0.17 0.52

We can see that $V_{Ed,u1} = 0.28MPa < V_{Rd,c} = 0.55MPa$ so the shear capacity without reinforcement is sufficient. The control parameter is displayed in Green colour.

⇒ Shear capacity with reinforcement is sufficient

Let us look now at the standard output for node N59:

Puncł	ning d	design											
Linear ca Combinat Extreme: Selection: Summar	ion: ULS Node N59												
Name	Case	Punching case	Punching shape	UC _{vRd,ma} [-]	× UC _{vRd} [-]	reir	Shear forceme rimeters	nt	vRd,cs [-]	UC As [-]	UC [-] Check	
N59	ULS/1	Internal column	Circle (400)	0.3	6 1.	06 3x 12	2Ø8(radial) x80=240)	0.71		1.00 1.0	00 K, BUT	
Concrete	e												
Name	Case	Punching case β [-]	Punching shape	V _{Ed} [kN] ΔV _{Ed} [kN]	M _{Ed,y} [kNm] M _{Ed,z} [kNm]	Plate h [mm]	Materia f _{cd} [MPa]	[m]] [eff Im] Di Vo]	uo [m] u1 [m]	V _{Ed,u0} [MPa] V _{Ed,u1} [MPa]	V _{Rd,max} [MPa] V _{Rd,c} [MPa]	UC _{vRd,max} [-] UC _{vRd,c} [-]
N59	ULS/1	Internal column 1.15	Circle (400)	265.21 0.00	26.85 6.10	Ceiling 200.00	C30/37 20.00	16	0.00 0.37	1.257 3.267	1.52 0.58	4.22	0.3 1.0
Reinford	ement												
Name	Case	Shear reinforcen perimete	nent [m]	St,u1 [mm] St,out [mm]		perimet æ/capac	ity) f	aterial _{ywd,ef} MPa]	A _{sw} [mr A _{sw}	n²] ^{1,min}	A _{sw} [mm ²] A _{sw,tot} [mm ²]	V _{Rd,cs} [MPa] k _{max} V _{Rd,c} [MPa]	UC _{vRd,cs} [-] UCAsw,det [-]
N59	ULS/1	3x 12Ø8(rad 80+2x80=24			320/71%		B 5 290	500B).0		103 11	603 1810	1.42 0.82	0.7 1.0

We can see here that $V_{Ed,u1} = 0,58MPa < V_{Rd,c} = 0,55MPa$ and the $UC_{vRd,c} = 1,06 > 1$.

So shear reinforcement needs to be designed. The final value is $A_{sw,tot} = 1810 mm^2$ which take into account detailing provisions.

The control parameter is displayed in blue colour.

You can also show the Asw,tot graphically:

⇒ Use of provided reinforcement

Let's add some provided reinforcement to the plate. In the Concrete settings, go to the Design Defaults view :

	cription		Symbol	Value		Default	Unit	Chapter	Code	Structure	CheckTy
all>		P	<all></all>	⊂all>	P	<all></all>	Q ~ Q	<all> 🔎</all>	<all> 🔎</all>	all> 🔎	Design $\epsilon imes$
Desi	ign defaults										
	Reinforcement										
	Beam / Rib										
	Beam slab										
	D Column										
	▷ Plate			_			_				
	Wall / Deep beam Minimum cover										

Activate the provided template for the plates :

Here you can choose between the different templates.

You can give a basic provided reinforcement without any additional reinforcement or allow SCIA Engineer to calculate additional reinforcement when needed.

For this example, we will define the basic reinforcement without additional reinforcement and we will use diameter 16mm with a spacing of 150mm.

Now look at the standard output for node N59. With the required reinforced we needed additional shear reinforcement but with the provided reinforcement set above no need for shear reinforcement:

We can see that $V_{Ed,u1} = 0.58$ MPa < $V_{Rd,c} = 0.71$ MPa so the shear capacity without reinforcement is sufficient. The control parameter is now displayed in Green colour instead of blue.

⇒ Unity check is not ok: control perimeter is red

Change the "Type of Result" to Load Case LL1 and display the result for node N59:

Control perimeter is now displayed in red and the UC = 1,44 > 1.

Take a look at the Standard Output:

Punch	ning (design										
Linear cal Load case Extreme: Selection: Summar	e: LL1 Node N59											
Name	Case	Punching case	Punching shape	UC vRd,max [-]	، UC _{vR} [-]	rein	Shear forcement rimeters	UC _{vRd,e}		Asw,det [-] (UC [-] Check	
N59	LL1	Internal column	Circle (400)	0.9	6 2.		Ø8(radial) x110=740	1.4	4		44 OT OK	
Concrete	2											
Name	Case	Punching case β [-]	Punching shape	V _{Ed} [kN] ΔV _{Ed} [kN]	M _{Ed,y} [kNm] M _{Ed,z} [kNm]	Plate h [mm]	Material f∝ [MPa]	d _{eff} [mm] ρι [%]	u₀ [m] u₁ [m]	V Ed,u0 [MPa] V Ed,u1 [MPa]	V _{Rd,max} [MPa] V _{Rd,c} [MPa]	UC vRd,max [-] UC vRd,c [-]
N59	LL1	Internal column 1.15	Circle (400)	708.92 0.00	71.59 11.71	Ceiling 200.00	C30/37 20.00	160.00 0.84	1.257 3.267			0.96 2.17
Reinforc	ement											
Name	Case	Shear reinforcen perimete	nent [m]	S _{t,u1} [mm] St,out [mm]		perimet æ/capaci		l,ef [n ′a] Asv	w,req 1 m²] v1,min 1 m²]	A _{sw} [mm ²] A _{sw,tot} [mm ²]	V _{Rd,cs} [MPa] k _{max} v _{Rd,c} [MPa]	UC _{vRd,cs} [-] UCAsw,det [-]
N59	LL1	7x 19Ø8(rad 80+6x110=7			320/144% 960/66%	640/89	%, B 500E	3	842 20	955 6685	1.70 1.08	1.44

We can also show the errors and warning in the output by checking this option in the properties window:

2.6. Code dependant deflection (CDD)

2.6.1. Intro

The CDD calculation is a more rigorous calculation of the deflection. The calculation procedure is the same as for the simplified method, but with following differences:

- 3 types of combinations are used to calculate the deflections
- Calculation of stiffness is more precise

To be able to use this method in SCIA Engineer, the following settings should be set beforehand: 1. Use the post processing environment '**default**' in the Project menu:

	DATA			MATERIAL		
	DATA				_	
	Name:	-		Concrete	~	
				Material	C30/37	×
	Part:	-		Reinforcement mate	B 500A	¥
				Steel		
	Description:	-		Masonry		
	Author:	llcor		Aluminium		
	Aution.	0.001		Timber		
	Date:	30.08.2021		Steel fibre concrete		
				Other		
	Structure:	🜓 Frame XZ	*	CODE		
				National Code:		
	Post processing environment	🧳 default	·**	EC - EN		•
	Model:	関 One	¥	National annex:		
		<u>64bit ver</u>	sion info	Standard EN		<u>•</u>

- 2. In the Concrete menu, you will then see a new check named Code dependent deflection:

2.6.2. Types of combination for CDD

The combinations used for the CDD calculation can either be automatically generated or inserted but the user.

Automatic Creation of combinations for CDD

Three different combinations are automatically created by the software in the background to calculate the deflection:

1. Combination for calculation of total deflection Generated directly from the user choice of combination in the CDD check, properties window:

RESU	LTS (1)					
Name	Code dependent deflection					
ECTION						
Type of selection	All \checkmark					
Filter	No \vee					
Automatic combination						
ULT CASE FOR DEFLECTION						
Type of load	Combinations \lor					
Combination	SLS-Char (auto) \lor					
Envelope (for 2D drawing)	Absolute extreme 🗸					
Type of reinforcement	User 🗸					
REME 1D						
Extreme 1D	Global \smallsetminus					
Results in sections	All \checkmark					
Direction (local)	z (1D/2D) 🗸					
Values	UC \lor					
Output	Brief \vee					
Print combination key						
nt explanation of symbols	\bigcirc					

 Combination for calculation of immediate deflection Uses the generated combination for total deflection and removes variable load cases with duration type Medium, Short or Instantaneous. Duration type is defined in the Load cases properties:

 Combination for calculation of deflection due to creep Uses the generated combination for total deflection and multiplies variable load cases by a coefficient defined in Concrete settings > Deflections:

ws: Complete setup 🛛 👻 View sett 💌 Load d	efault	Find					Nationa	al annex:	
Description	Symbol	Value	Default	Unit	Chapter	Code	Struct	Check	Π
all>	all> P	<all></all>	<all></all>		<all> 🔎</all>	<all> D</all>	<all></all>	<all> D</all>	
Design defaults									
Reinforcement									
Minimum cover									
Solver setting									
▶ General									
Internal forces									
Design As									
Conversion to rebars									1
Interaction diagram									
▶ Shear									
▶ Torsion									
Stress limitations									
Cracking forces									
Crack width									
Deflections									
Coefficient for increasing the amount of reinforc.	Coeff _{reinf}	1.0	1.0			Independ	All (Be	Solver s	
Maximal total deflection L/x; x =	×tot	250.0	250.0		7.4.1(4)	EN 1992-1-1			
Maximal additional deflection L/x; x =	Xadd	500.0	500.0		7.4.1(5)	EN 1992-1-1			
Type of variable load coefficient for the automati.		Use Psi2 f 🔺	U e Psi2			Independ	All (Be	Solver s	

Additional characteristic combinations are generated for each previously mentioned combination to determine if the section is cracked or uncracked.

Manual input of combinations for CDD

It is possible for the user to introduce his own combinations for calculation of immediate deflection and deflection due to creep.

In order to introduce these manual combinations, the option "Automatic combination" must be unchecked in the CDD check, properties window.

Two new sections ("Result case: Creep deflection" and "Result case: Immediate deflection") appear in the properties window where you can choose the combinations for creep and immediate deflections.

These combinations have to be linear combinations, it means that creep and immediate deflection will be the same for all sub-combinations generated from combination for total deflection.

Ξ	RESU	LTS (1)	$\boldsymbol{\heartsuit}$
	Name	Code dependent deflection	
•	SELECTION		
	Type of selection	All \checkmark	
	Filter	No 🗸	
	Automatic combination	\bigcirc	
•	RESULT CASE: TOTAL DEFLECTION	ON	
	Type of load	Combinations \checkmark	_
	Combination	SLS-Char (auto) \checkmark	
	Envelope (for 2D drawing)	Absolute extreme	2
	RESULT CASE: CREEP DEFLECTI	ON	וור
	Type of load	Combinations \checkmark	
	Combination	SLS - creep deflection \vee	
-	RESULT CASE: IMMEDIATE DEFL	ECTION	
	Type of load	Combinations \checkmark	
	Combination	SLS - immediate deflection \sim	
	Type of reinforcement	User \vee	
•	EXTREME 1D		
	Extreme 1D	Global \checkmark	
	Results in sections	All \checkmark	
	Direction (local)	z (1D/2D) 🗸	
	Values	UC \checkmark	

The combination for calculation of total deflection remains generated directly from the user choice of combination in the CDD check, properties window.

2.6.3. Type of reinforcement

For the CDD method, it is possible to calculate the deflection with required, provided or user inputted reinforcement. This choice is done in the Properties window of the CDD check:

RESU	LTS (1)	0			
Name	Code dependent deflection				
 SELECTION 		1			
Type of selection	All \checkmark				
Filter	No \vee				
Automatic combination					
 RESULT CASE FOR DEFLECTION 	i.	1			
Type of load	Combinations \checkmark				
Combination	SLS-Char (auto) 🗸				
Envelope (for 2D drawing)	Absolute extreme \vee				
Type of reinforcement	User 🗸 🗸				
 EXTREME 1D 	Required	Π			
Extreme 1D	Provided				
Results in sections	User Alt V	-			
Direction (local)	z (1D/2D) 🗸				
Values	$ m uc \sim$				
Output	Brief \lor	-			
Print combination key					
Print explanation of symbols	0				

2.6.4. Calculation of stiffness for 1D elements

Members which are not expected to be loaded above the level which would cause the tensile strength of the concrete to be exceeded anywhere within the member should be considered to be uncracked. Members which are expected to crack, but may not be fully cracked, will behave in a manner intermediate between the uncracked and fully cracked conditions. New stiffness (stiffness with taking into account cracking) is calculated in center of each 1D element.

Two types of stiffness are calculated:

Short-term stiffness - is calculated using 28 days modulus of elasticity $E_c = E_{cm}$, it follows that value of stiffness is loaded directly from properties of the concrete material

Long-term stiffness - is calculated using effective E modulus based on creep coefficient for acting load, it follows $E_c = E_{c,eff} = E_{cm}/(1+\phi)$.

Calculation effective modulus of elasticity is based on equation 5.27 in EN 1992-1-1, but instead of effective creep coefficient φ_{ef} , only creep coefficient φ is used

The following procedure is used for the calculation of stiffnesses:

- 1) The transformed cross-section characteristics of uncracked section (Ai, Ii, ti...) are calculated
- 2) The stiffnesses of the uncracked cross-section ((Eiy)_I,(Eiz)_I, (EA)_I) to the center of the uncracked transformed cross-section are calculated.
- 3) The maximum value of tensile stress of the uncracked cross-section (value $\sigma_{ct,res}$) for respective characteristic combination (N_{char,res},M_{char,res,y}, M_{char,res,z}) is calculated
- 4) The maximum value of tensile stress of uncracked cross-section (value σ_{ct,imm}) for immediate characteristic combination (N_{char,im},M_{char,im,z}) is calculated
- 5) Compare σ_{ct} with $\sigma_{ct,imm}$

If $\sigma_{ct} \ge \sigma_{ct,imm}$

The respective characteristic combination will be used for calculation, N_{char}=N_{char,res},M_{char,y}=M_{char,res,y}, M_{char,z}=M_{char,res,z}, $\sigma_{ct}=\sigma_{ct,res}$

If σ_{ct}≤σ_{ct,imm}

The immediate characteristic combination will be used $N_{char}=N_{char,im}$, $M_{char,y}=M_{char,im,y}$, $M_{char,z}=M_{charim,z}$, $\sigma_{ct}=\sigma_{ct,im}$ 6) Compare σ_{ct} with σ_{cr}

If $\sigma_{ct} \leq \sigma_{cr}$

Cross-section is uncracked:

- bending stiffness around y-axis El_y = (Eiy)_I
- bending stiffness around z axis El_z = (Eiy)
- axial stiffness EA = EAI,

If $\sigma_{ct} \geq \sigma_{cr}$

Cross-section is cracked and average stiffness will be calculated.

(Calculation of average stiffness)

- 7) The transformed Css characteristics of the cracked section (Air, Iir, tir...) is calculated.
- 8) The stiffnesses of the fully cracked cross-section ((Eiy)_{II}, (Eiz)_{II}, (EA)_{II}) to center of cracked transformed cross-section is calculated
- The stress in the tensile reinforcement of the fully cracked cross-section (value σ_{sr}) for characteristic combination (N_{char}, M_{char}, M_{char},) is calculated.
- 10) The stress in the tensile reinforcement of the fully cracked cross-section (value σ_s)for respective combination (N,M_y,M_z) is calculated.
- 11) The distribution coefficient ζaccording equation 7.19 in EN 1992-1-1 is calculated

$$\zeta = 1 - \beta \left(\frac{\sigma_{\rm sr}}{\sigma_{\rm s}}\right)^2$$

where β is a coefficient taking account the influence of the duration of the loading or of repeated loading on the average strain (β =1 for calculation of short-term stiffness, β =0,5 for calculation of long-term stiffness)

12) The average value of the stiffnesses based on equation 7.18 in EN 1992-1-1 is calculated

- bending stiffness around y-axis (Eiy) = $1/[\zeta/(Eiy)_{II} + (1-\zeta)/(Eiy)_{I}]$
- o bending stiffness around z-axis (Eiz) = $1/[\zeta/(Eiz)_{II} + (1-\zeta)/(Eiz)_{I}]$
- axial stiffness (EA) = $1/[(\zeta/(EA)_{II} + (1-\zeta)/(EA)_{I}],$

Stiffness is recalculated to principal axis for unsymmetrical cross-section

13) The five types of stiffnesses are calculated for each 1D element and each dangerous combination:

Type of stiffness	Respective combination
Short-term stiffness for immediate deflection	Immediate
Short-term stiffness for short-term deflection	Total
Short-term stiffness for creep deflection	Сгеер
Long-term stiffness for creep deflection	Сгеер
Long-term stiffness for shrinkage deflection	Total

14) The following stiffnesses are changes in stiffness matrix for 1D elements: $EA_x = EA$ $GA_y = GA_z = G \cdot EA_x/(1.2 \cdot E_c)$ $EI_y = Eiy$ $EI_z = Eiz$ $GI_x = 0.5 \cdot (1-\mu) \cdot (EI_y \cdot) EI_z)^{0.5}$

where

G is shear modulus of the concrete calculated according to formula G = $0.5 \cdot E_c/(1+\mu)$ μ is Poisson coefficient of the concrete loaded from material properties of the concrete

Eccentricity of stiffnesses (distance between center of gravity of concrete cross-section and center of gravity of cracked transformed cross-section) is not taken into account in current version

Calculation of curvature, strain and stiffness caused by shrinkage of a 1D element

Calculation of shrinkage forces

The forces caused by shrinkage are calculated according to formulas below. The forces are calculated for both states: uncracked and cracked cross-section.

$$\begin{split} N_{shr} &= -\epsilon_{cs}(t,t_s) \cdot \text{Coef}_{\text{Reinf}} \sum (E_{si} \cdot A_{si}) \\ M_{shr,y} &= N_{shr} \cdot e_{shr,z} \\ M_{shr,z} &= N_{shr} \cdot e_{shr,y} \end{split}$$

Where

 $e_{shr,y} = \sum (E_{si} \cdot A_{si}) / \sum (E_{si} \cdot A_{si} \cdot y_{si}) - t_{iy}$

 $e_{shr,z} = \sum (E_{si} \cdot A_{si}) / \sum (E_{si} \cdot A_{si} \cdot z_{si}) - t_{iz}$

 $\epsilon_{cs}(t,t_s)$ - total shrinkage strain

Coefreinf - coefficient increasing amount of reinforcement

 E_{si} - modulus of elasticity of i-th bar of reinforcement

Asi - area of reinforcement of i-th bar of reinforcement

ysi - position of i-th bar of reinforcement from center of gravity of cross-section in y-direction

zsi - position of i-th bar of reinforcement from center of gravity of cross-section in z-direction

t_{iy} - distance between center of gravity of transformed uncracked/cracked cross-section and center of gravity of concrete cross-section in y-direction

t_{iz} - distance between center of gravity of transformed uncracked/cracked cross-section and center of gravity of concrete cross-section in z-direction

Shrinkage deflection (long-term stiffness)

	N [kN]	My [kNm]	M _z [kNm]
Combination: CO2/1_tot	0.00	159.75	0.00
Characteristic combination (char): CO2/1_tot_char	0.00	159.75	0.00

Forces caused by shrinkage: N_{shr} = 140.74 kN, M_{shr,y} = 24.56 kNm, M_{shr,z} = 0.00 kNm

Cross-section characteristics

Type of	ty	tz	Α	ly -	I _z	xi	A,
component	[mm]	[mm]	[mm ²]	[mm ⁴]	[mm ⁴]	[mm]	[mm ²]
Linear	0.0	0.0	320000	9.02·10 ⁹	17.6·10 ⁹	218.0	-
Uncracked	0.0	-19.7	356135	12.1.10 ⁹	19.7·10 ⁹	232.2	1407
Cracked	0.0	73.4	175211	5.31·10 ⁹	13.7·10 ⁹	139.1	1407

Cracking forces

N _{er} [kN]	M _{y,cr} [kNm]	M _{z,cr} [kNm]		σ _{cr} [MPa]	Cracked section	σ _{sr} [MPa]	σ <u>;</u> [MPa]	β [-]	ζ [-]	E _c [GPa]
0.00	73.03	0.00	4.87	2.20	YES	144.6	316.4	0.5	0.896	30.0

Stiffness calculation

Axial stiffness EA: EA _I = 9600.00 MN EA _{II} = 9600.00 MN	
$EA = \frac{1}{\frac{\zeta}{EA_{\parallel}} + \frac{1-\zeta}{EA_{\parallel}}} = \frac{1}{\frac{0.896}{9600.00} + \frac{1-0.896}{9600.00}} = 9600.00 \text{ MN}$	(7.18)
Bending stiffness El_{yi} : $El_{y,l} = 672.92 \text{ MN·m}^2$ $El_{y,l} = 193.17 \text{ MN·m}^2$	
$EI_{y} = \frac{1}{\frac{\zeta}{EI_{y,II}} + \frac{1-\zeta}{EI_{y,II}}} = \frac{1}{\frac{0.896}{193.17} + \frac{1-0.896}{672.92}} = 208.71 \text{ MN-m}^2$	(7.18)
Bending stiffness El _y : El _{z,i} = 527.00 MN·m ² El _{z,i} = 527.00 MN·m ²	
$FI = \frac{1}{1} = \frac{1}{1} = 527.00 \text{ MNJm}^2$	(7 18)

Calculation of strain and curvature caused by the shrinkage

Strain and curvature caused by shrinkage are calculated for each 1D element and these values are calculated for both states (uncracked and cracked cross-section)

Calculation of strain caused by shrinkage: $\epsilon_x = -\epsilon_{cs}(t,t_s) \cdot \text{Coef}_{\text{Reinf}} \cdot \sum (E_{si} \cdot A_{si})/(E_{ceff} \cdot A_i)$

Calculation of curvature around y and z axis caused by shrinkage

 $(1/r_y) = -\varepsilon_{cs}(t,t_s) \cdot \text{Coef}_{\text{Reinf}} \cdot \sum (\text{E}_{si} \cdot \text{Asi} \cdot (t_{iz} - z_{si})) / (\text{E}_{ceff} \cdot \mathbf{I}_{iy})$

 $(1/r_z) = -\epsilon_{cs}(t,t_s) \cdot Coef_{Reinf} \cdot \sum (E_{si} \cdot A_{si} \cdot (t_{iy} - y_{si})) / (E_{ceff} \cdot I_{iz})$

Where

 $\epsilon_{cs}(t,t_s)$ - total shrinkage strain

Coefreinf - coefficient increasing amount of reinforcement

 E_{si} - is modulus of elasticity of i-th bar of reinforcement

 A_{si} - is area of reinforcement of i-th bar of reinforcement

ysi - position of i-th bar of reinforcement from center of gravity of cross-section in y-direction

zsi - position of i-th bar of reinforcement from center of gravity of cross-section in z-direction

 t_{iy} - distance between the center of gravity of transformed uncracked/cracked cross-section and center of gravity of concrete cross-section in y-direction

 t_{iz} - distance between the center of gravity of transformed uncracked/cracked cross-section and center of gravity of concrete cross-section in z-direction

 E_{ceff} - effective modulus of elasticity of the concrete calculated according to formula $E_c = E_{c,eff} = E_{cm}/(1+\phi)$. E_{cm} - secant modulus of elasticity of concrete

o - creep coefficient

Ai - transformed area of uncracked/cracked cross-section

l_{iy} - transformed second moment of area around y-axis of uncracked/cracked cross-section calculated to center of gravity of transformed uncracked/cracked cross-section

 I_{iz} - transformed second moment of area around z axis of uncracked/cracked cross-section calculated to center of gravity of transformed uncracked/cracked cross-section

Calculation of stiffnesses for shrinkage

The stiffness of uncracked/cracked cross-section for shrinkage is calculated from strain and curvatures caused by shrinkage by using total level of load (total load combination)

- bending stiffness around y-axis $EI_y = M_{tot,y}/(1/r_y)$
- bending stiffness around z axis $EI_z = M_{tot,z}/(1/r_z)$
- axial stiffness $EA = N_{tot}/\epsilon_x$

2.6.5. Calculation of stiffness for 2D elements

The following procedure is used for the calculation of stiffness of 2D elements:

1) The principal stresses of 2D element for both surfaces is calculated

$$\begin{split} \sigma_{1\mp} &= \frac{\sigma_{x\mp} + \sigma_{y\mp}}{2} + \frac{1}{2} \sqrt{\left(\sigma_{x\mp} - \sigma_{y\mp}\right)^2 + 4 \cdot \sigma_{xy,\mp}} \\ \sigma_{2\mp} &= \frac{\sigma_{x\mp} + \sigma_{y\mp}}{2} - \frac{1}{2} \sqrt{\left(\sigma_{x\mp} - \sigma_{y\mp}\right)^2 + 4 \cdot \sigma_{xy,\mp}} \end{split}$$

2) The angle of principal stresses at both surfaces is calculated

$$\alpha_{\sigma 1 \overline{+}} = 0.5 \cdot \tan^{-1} \left(\frac{2 \cdot \sigma_{xy\overline{+}}}{\sigma_{x\overline{+}} - \sigma_{y\overline{+}}} \right)$$

3) The final value of the principal stress is calculated

 $\alpha = \alpha_{\sigma_{1+}}$ if $\sigma_{1+} \ge \sigma_{1-}$

 $\alpha = \alpha_{\sigma^{1-}}$ otherwise

4) The internal forces are recalculated to the direction of the principal stresses $\boldsymbol{\alpha}$

$$m(\alpha) = m_x \cdot \cos^2(\alpha) + m_y \cdot \sin^2(\alpha) + m_{xy} \cdot \sin(2 \cdot \alpha)$$

$$n(\alpha) = n_x \cdot \cos^2(\alpha) + n_y \cdot \sin^2(\alpha) + n_{xy} \cdot \sin(2 \cdot \alpha)$$

where nx,ny,nxy,mx,my,mxy are 2D forces in center of 2D element

5) The area of reinforcement is recalculated to the direction of of the principal stress α

 $A_s(\alpha) = A_s \cdot \cos^2(\alpha \cdot \alpha_s)$

- where A_{s,α_s} is area and angle of longitudinal reinforcement
- 6) The non-linear stiffness in the first principal direction is calculated according to the procedure as for 1D element
 - o for rectangular cross-section (b =1m, h = thickness of 2D element in center of gravity)
 - $\circ~$ for internal forces N = n($\alpha)$, My= m($\alpha)$ and Mz=0 according procedure as for 1D element
- The non-linear stiffness in the second principal direction is calculated according to the procedure as for 1D element
 - for rectangular cross-section (b =1m, h = thickness of 2D element in center of gravity)
 - $\circ~$ for internal forces N = n(\alpha+90) , My= m(\alpha+90) and Mz=0 according procedure as for 1D element
- 8) The stiffness for shrinkage deflection is calculated in both directions of principal axes as explained in the next section.
- 9) The five types of stiffnesses are calculated for each 2D element and each dangerous combination:

Type of stiffness	Respective combination	Direction of principal stress
Short-term stiffness for immediate deflection	Immediate	First (EA1,Ely1,Elz1)
	Innieulate	Second (EA ₂ ,Ely ₂ ,Elz ₂)
Short-term stiffness for short-term deflection	Total	First (EA1,Ely1,Elz1)
Short-term summess for short-term denection		Second (EA ₂ ,Ely ₂ ,Elz ₂)
Chart term etiffness for green deflection	Green	First (EA1,Ely1,Elz1)
Short-term stiffness for creep deflection	Сгеер	Second (EA ₂ ,Ely ₂ ,Elz ₂)
Long term etiffness for ereen deflection	Croop	First (EA1,Ely1,Elz1)
Long-term stiffness for creep deflection	Сгеер	Second (EA ₂ ,Ely ₂ ,Elz ₂)
Long term stiffness for shrinkage deflection	Total	First (EA1,Ely1,Elz1)
Long-term stiffness for shrinkage deflection		Second (EA ₂ ,Ely ₂ ,Elz ₂)

10) The following stiffnesses are changes in stiffness matrix for 2D elements: D11 = Ely₁ D22 = Ely₂ D33 = $0.5 \cdot (1-\mu) \cdot (D11 \cdot D22)^{0.5}$ D44 = G·h/1.2 D55 = G·h/1.2 D12 = $\mu \cdot (D11 \cdot D22)^{0.5}$ d11 = EA₁ d22 = EA₂ d33 = G·h d12 = $\mu \cdot (d11 \cdot d22)^{0.5}$ G is shear modulus of the concrete calculated according to formula G = $0.5 \cdot E_c/(1+\mu)$

 μ is Poisson coefficient of the concrete loaded from material properties of the concrete

Eccentricity of stiffnesses (distance between center of gravity of concrete cross-section and center of gravity of cracked transformed cross-section) is not taken into account in current version

Calculation of curvature, strain and stiffness caused by shrinkage of a 2D element

Calculation of shrinkage forces

The forces are calculated in the center of gravity of each element and they are calculated in two directions:

- The first one is the direction of principal stress $\boldsymbol{\alpha}$
- The second one is the direction of principal stress $\alpha\text{+}90^\circ$

The forces caused by shrinkage for first/second direction are calculated according to formulas below. The forces are calculated for both states: uncracked and cracked cross-section.

$$\begin{split} n_{shr} &= \text{-}\epsilon_{cs}(t,t_s) \cdot Coef_{\text{Reinf}} \sum (E_{si} \cdot A_{si(\alpha)}) \\ m_{shr} &= n_{shr} \cdot e_{shr,z} \end{split}$$

where $\begin{array}{l} e_{shr,z}=&\sum(E_{si}\cdot A_{si(\alpha)})/\sum(E_{si}\cdot A_{si(\alpha)}\cdot z_{si}) \ \ t_{iz(\alpha)}\\ & \epsilon_{cs}(t,t_s) \ \ \text{- total shrinkage strain}\\ Coef_{reinf} \ \ \text{- coefficient increasing amount of reinforcement}\\ & E_{si} \ \ \text{- is modulus of elasticity of i-th bar of reinforcement} \end{array}$

MJA / TC - 2023/01/16

 $A_{si(\alpha)}$ - is area of reinforcement of i-th bar of reinforcement in first (angle α)/second direction (angle α +90°) of principal stress

z_{si} - position of i-th bar of reinforcement from center of gravity of cross-section in z-direction

 $t_{iz(\alpha)}$ - distance between center of gravity of transformed uncracked/cracked cross-section and centre of gravity of concrete cross-section in z-direction and in first (angle α)/second direction (angle α +90°) of principal stress

Calculation of strain and curvature caused by the shrinkage

Strain and curvature caused by shrinkage are calculated for each 2D elements and these values are calculated for both states (uncracked and cracked cross-section). The values are calculated in both directions of principal stresses.

Calculation of strain caused by shrinkage:

 $\epsilon_{x} = -\epsilon_{cs(t,ts)} \cdot \text{CoefReinf} \cdot \sum (E_{si} \cdot A_{si(\alpha)}) / (E_{ceff} \cdot A_{i(\alpha)})$

Calculation of curvature around y and z axis caused by shrinkage:

 $(1/r) = -\epsilon_{cs}(t,t_s) \cdot Coef_{Reinf} \cdot \sum (E_{si} \cdot A_{si(\alpha)} \cdot (t_{iz(\alpha)} - z_{si})) / (E_{ceff} \cdot I_{iy(\alpha)})$

where

 $\epsilon_{cs}(t,t_s)$ - total shrinkage strain

Coefreinf - coefficient increasing amount of reinforcement

 E_{si} - is modulus of elasticity of i-th bar of reinforcement

 $A_{si(\alpha)}$ - is area of reinforcement of i-th bar of reinforcement in first (angle α)/second direction (angle α +90°) of principal stress

 z_{si} - position of i-th bar of reinforcement from center of gravity of cross-section in z-direction

 $t_{iz(\alpha)}$ - distance between centre of gravity of transformed uncracked/cracked cross-section and centre of gravity of concrete cross-section in z-direction and in first (angle α)/second direction (angle α +90°)of principal stress E_{ceff} - effective modulus of elasticity of the concrete calculated according formula E_c = E_{c,eff} = E_{cm}/(1+ ϕ).

Ecm - secant modulus of elasticity of concrete

 ϕ - creep coefficient

 $A_{i(\alpha)}$ - transformed area of uncracked/cracked cross-section in the first (angle α)/second direction (angle α +90°) of principal stress

 $I_{iy(\alpha)}$ - transformed second moment of area around y axis of uncracked/cracked cross-section calculated to centre of gravity transformed uncracked/cracked cross-section in the first (angle α)/second direction (angle α +90°)of principal stress

Calculation of stiffnesses for shrinkage

The stiffness of uncracked/cracked cross-section for shrinkage is calculated from strain and curvatures caused by shrinkage by using total level of load (total load combination)

- bending stiffness in direction of first principal axis $Ely_1 = m_{tot(\alpha)}/(1/r)_1$
- bending stiffness in direction of second principal axsi Ely₂ = $m_{tot(\alpha+90)}/(1/r)_2$
- axial stiffness in direction of first principal axis $EA_1 = n_{tot(\alpha)}/\epsilon_{x,1}$
- axial stiffness in direction of second principal axis $EA_2 = n_{tot(\alpha+90)}/\epsilon_{x,2}$

where

 $n_{tot(\alpha)}$, $n_{tot(\alpha+90}$ - are axial forces from total combination in 2D element recalculated to direction of first and second principal axis

 $m_{tot(\alpha)}$, $m_{tot(\alpha+90}$ - are bending moments from total combination in 2D element recalculated to direction of first and second principal axis

 $\varepsilon_{x,1(2)}$ - is strain caused by shrinkage calculated in direction of first (second) principal axis

 $(1/r)_{1(2)}$ - is curvature caused by shrinkage calculated in direction of first (second) principal axis

Deflection for shrinkage is calculated in FEM analysis for total combination, therefore the stiffness are calculated with using internal forces for total combination

2.6.6. **Parameters for the calculation of shrinkage strain**

The total shrinkage strain is composed of two components, the drying shrinkage strain and the autogenous shrinkage strain. The drying shrinkage strain develops slowly, since it is a function of the migration of the water through the hardened concrete. The autogenous shrinkage strain develops during hardening of the concrete.

There are three options for calculation/input of total shrinkage strain that can be selected in the concrete settings menu:

- No (Consider drying and autogenous shrinkage= No): shrinkage will not be taken into account in CDD calculation
- Automatic calculation (Consider drying and autogenous shrinkage = Auto), where shrinkage strain is calculated according to EN 1992-1-1, chapter 3.1.4(6) for following input parameters:
 - Relative humidity
 - Age of concrete at beginning of drying shrinkage
 - Age of concrete at moment considered

Except of these input parameters, automatic calculation of shrinkage strain depends on material properties (mean compressive strength of concrete f_{cm} , characteristic compressive cylinder strength f_{ck} , type of cement), cross-section parameters (cross-sectional area A_c and the perimeter of the member in contact with the atmosphere u)

• User input (Consider drying and autogenous shrinkage = User value) and user can input directly value of total shrinkage strain

ews: Complete setup 🔹 View sett 👻 Load defaul	t Find						Nationa	al annex: 🏹
Description	Symbol	Value	Default	Unit	Chapter	Code	Struct	Check
all>	<all></all>	<all></all>	<all></all>		<all> 🔎</all>	<all> 🔎</all>	<all> 🔎</all>	<all> 🔎</all>
Design defaults								
Solver setting								
✓ General								
Limit value of unity check	Lim.check	1.0	1.0			Independe	All (Bea	Solver s
Value of unity check for not calculated unity check	Ncal.check	3.0	3.0			Independe	All (Bea	Solver s
The coefficient for calculation effective depth of cros	Coeff _d	0.9	0.9			Independe	All (Bea	Solver s
The coefficient for calculation inner lever arm	Coeff _z	0.9	0.9			Independe	All (Bea	Solver s
The coefficient for calculation force, where member	Coeff _{com}	0.1	0.1			Independe	All (Bea	Solver s
Creep and shrinkage								
Age of concrete at the moment considered	t	1825.00	18250.00	day	3.1.4.B.1-2	EN 1992-1-1	All (Bea	Solver s
Relative humidity	RH	50	50	%	3.1.4.B.1-2	EN 1992-1-1	All (Bea	Solver s
Type input of creep coefficient	Type q (t,to)	Auto	Auto		3.1.4(2)	EN 1992-1-1	All (Bea	Solver s
Age of concrete at loading	t _o	28.00	28.00	day	3.1.4(2),B1	EN 1992-1-1	All (Bea	Solver s
Consider drying and autogenous shrinkage	Type <mark>ɛ_{cs}(t,ts</mark>	s Auto 🔺	Auto		3.1.4(6)	EN 1992-1-1	All (Bea	Solver s
Age of concrete at the beginning of drying shrin		No	7.00	day	3.1.4(6),B2	EN 1992-1-1	All (Bea	Solver s
▷ SLS		Auto						

2.6.7. Calculation of deflection

The following deflections are calculated in the CDD check:

 δ_{lin} linear (elastic) deflection, calculated for the total combination and for linear stiffness.

 Δ_{imm} immediate deflection, the deflection after applying permanent and long-term variable loads which means calculated for short-term stiffness and immediate combination

 δ_{short} short-term deflection, the deflection which considers cracking of cross-section calculated for short-term stiffness and total combination

 δ_{creep} creep deflection, calculated as the difference between deflection calculated for long-term and short-term stiffness for the creep combination. $\Delta_{creep} = \delta_{creep, long} - \delta_{creep, short}$

 δ_{shr} deflection caused by drying and autogenous shrinkage. The long-term stiffness is calculated from strain and curvature caused by shrinkage using total combination.

 δ_{add} additional deflection, the deflection after applying a variable load and considering creep calculated as the difference between total and immediate deflection. $\Delta_{add} = \delta_{tot} - \delta_{imm}$

 δ_{tot} total deflection, the deflection which considers creep and cracking calculated as the sum of short-term deflection and deflection caused by creep. $\Delta_{tot} = \delta_{short} + \delta_{creep}$

All those values can be displayed on the screen:

MJA / TC - 2023/01/16

Chapitre 3: Modification of results

3.1. Location

During a calculation in SCIA Engineer, the node deformations and the reactions are calculated exactly (by means of the displacement method). The stresses and internal forces are derived from these magnitudes by means of the assumed basic functions, and are therefore in the Finite Elements Method always less accurate.

The Finite Elements Mesh in SCIA Engineer exists of linear 3- and/or 4-angular elements. Per mesh element 3 or 4 results are calculated, one in each node. When asking the results on 2D members, the option 'Location' in the Properties window gives the possibility to display these results in 4 ways.

3.1.1. In nodes, no average

All of the values of the results are taken into account, there is no averaging. In each node are therefore the 4 values of the adjacent mesh elements shown. If these 4 results differ a lot from each other, it is an indication that the chosen mesh size is too large.

This display of results therefore gives a good idea of the discretisation error in the calculation model.

3.1.2. In centers

Per finite element, the mean value of the results in the nodes of that element is calculated. Since there is only 1 result per element, the display of isobands becomes a mosaic. The course over a section is a curve with a constant step per mesh element.

3.1.3. In nodes, average

The values of the results of adjacent finite elements are averaged in the common node. Because of this, the graphical display is a smooth course of isobands.

In certain cases, it is not permissible to average the values of the results in the common node:

- At the transition between 2D members (plates, walls, shells) with different local axes.

- If a result is really discontinuous, like the shear force at the place of a line support in a plate. The peaks will disappear completely by the averaging of positive and negative shear forces.

3.1.4. In nodes, average on macro

The values of the results are averaged per node *only* over mesh elements which belong to the same 2D member and which have the same directions of their local axes. This resolves the problems mentioned at the option 'In nodes, average'.

3.1.5. Accuracy of the results

If the results according to the 4 locations differ a lot, then the results are inaccurate and the mesh has to be refined. A basic rule for a good size of the mesh elements, is to take 1 to 2 times the thickness of the plate.

3.2. Averaging strip

An averaging strip averages peak values over a zone. You can find the averaging strip in the Input Panel in the "Result tools" category :

INPUT PANEL	\blacksquare All workstations \lor
Res AVERAGING STRIP	🥔 All tags 🗸
r* 🏚 🕮 🐥	

RS RS		×
Name		
Туре	Strip	*
Direction	1.000 ongitudinal	*

Type: a point or a strip can be chosen. **Dimensions:** here the dimensions of the point/strip need be set. **Direction:**

1) Direction = Longitudinal

Longitudinal means that the averaging is done in the longitudinal direction of the strip. In the example above this is the y-direction. This means that the averaging is done for my. The values my are averaged in the x-direction.

2) Direction = perpendicular

Perpendicular means that the averaging is done perpendicular to the longitudinal direction of the strip. In the example above this is the x-direction. This means that the averaging is done for mx. The values mx are averaged in the y-direction.

3) Direction = Both

Both means that the averaging is done in both directions of the averaging strip. This means the values are averaged for mx as well as my in the direction perpendicular to mx and my.

To activate the averaging strip, the option 'Averaging of peak' needs to be checked in the properties window.

▼ RESULT CASE	
Type of load	Combinations \checkmark
Combination	ELU-Set B (auto) 🗸
Envelope (for 2D drawing)	Absolute extreme $ \smallsetminus $
Averaging of peak	
Location	In nodes avg. on macro \vee
System	LCS mesh element \checkmark
Extreme	Global \vee
Type of values	Basic magnitudes \checkmark
Values	m_x ∨

As an example, we will apply averaging strips to the model of the chapter "2D concrete members" for the value $A_{sw,req}$.

Asw,req without Averaging of peaks

 $A_{\mbox{\scriptsize sw,req}}$ with averaging of peaks

3.3. **Rib**

A rib can be added to a plate in the Input Panel in the "1D Members" category :

	💼 All workstations 🗸
1D Membe RIB	🥔 All tags 🗸
🗲 🗕 🔋 🔽 🤜 🖜 🖬	

But also in the Input Panel in the "2D Members" category :

	💼 All workstations 🗸
2D ME RIBBED SLAB	nll tags 🗸
🖾 🎬 🖉 📅 📾 🌗 🍫	🗎 🍫 🖻 🖻 🖉 🌮
8	

3.3.1. **Results in ribs**

When a rib is added to the model there will be an option rib available in the result properties of 1D and 2D members. This option has an influence on what results you view.

Link between the internal forces calculated for the entire T-section, and for the beam and slab separately

When calculating the internal forces in a rib, the substitute T-section is used to calculate the results. The web of this T-section is formed by the rib-beam itself, the flange of the T-section is made with the effective width of the slab. The effective width of the slab has to be used to determine the internal forces of the slab that have to be added to the internal forces calculated in the rib itself.

Т	the heart of the entire substitute T-section	
T1	the heart of the left part of the effective width	
T2	the heart of the right part of the effective width	
Т3	the heart of the original rib	
z	Left part Right part +T1 +T2 +T3 y 0	

The coordinates of the hearts are used as lever arms in Y and Z direction:

Lever Arm Z1 = T1z - Tz	Lever Arm Y1 = T1y - Ty	
Lever Arm Z2 = T2z - Tz	Lever Arm Y2 = T2y - Ty	
Lever Arm Z3 = T3z - Tz	Lever Arm Y3 = T3y - Ty	
Lever Arm Z = Tz - 0z	Lever Arm Y = Ty - 0y	

The final internal forces in the rib can be calculated with the formula below:

$$\begin{split} &\mathsf{N} = \mathsf{N} \text{ beam} + \mathsf{N} \text{ slab, left} + \mathsf{N} \text{ slab, right} \\ &\mathsf{V}_y = \mathsf{V}_y \text{ beam} + \mathsf{V}_y \text{ slab, left} + \mathsf{V}_y \text{ slab, right} \\ &\mathsf{V}_z = \mathsf{V}_z \text{ beam} + \mathsf{V}_z \text{ slab, left} + \mathsf{V}_z \text{ slab, right} \\ &\mathsf{M}_x = \mathsf{M}_x \text{ beam} + \mathsf{M}_x \text{ slab, left} + \mathsf{M}_x \text{ slab, right} \\ &\mathsf{M}_y = \mathsf{M}_y \text{ beam} + \mathsf{M}_y \text{ slab, left} + \mathsf{M}_y \text{ slab right} + \mathsf{N} \text{ slab, left}^* (\text{Lever Arm } Z_1) - \mathsf{N} \text{ slab, right}^* (\text{Lever Arm } Z_2) + \mathsf{N} \\ &\text{beam}^* \text{ Lever Arm } Z3; \\ &\mathsf{M}_z = \mathsf{M}_z \text{ beam} + \mathsf{M}_z \text{ slab, left} + \mathsf{M}_z \text{ slab, right} + \mathsf{N} \text{ slab, left}^* (\text{Lever Arm } Y_1) - \mathsf{N} \text{ slab, right}^* (\text{Lever Arm } Y_2) + \mathsf{N} \\ &\text{beam}^* \text{ Lever Arm } Y_3; \end{split}$$

Why is there an axial force in the rib ?

SCIA Engineer integrates the ribs as eccentric beams attached to slabs. The eccentricity is calculated from the half of the slab thickness and half of the height of the cross section of the beam.

During the input of the cross section of the beam, the height of the cross section is defined as a distance between the bottom of the slab and the bottom of the beam. In the picture, the height is marked as "H".

Due to the shift of the neutral axis, the internal forces in the whole system change. In a simple system subject to a bending moment only, we get a structure with an internal bending moment as well as axial force.

Usually, if the beam is below the slab, we get compression in the slab and tension in the beam. The eccentric beam causes axial forces in the slab. This results from the deformation of the whole slab+beam system. The picture shows the horizontal deformation "u_x" to explain graphically the behaviour of the system. This system is composed of two beams of a rectangular cross section connected by rigid links. The horizontal displacement of the support is free to prevent the constraint.

The horizontal deformation in a side view:

If we look at the beginning of the beam, we can see compression in the slab and tension in the beam:

Of course, the whole system must be in equilibrium and the total axial force equal to the sum of the axial force in the slab and in the beam must be zero.

In our model, we have only one beam and all the internal forces of the top part are integrated in the axial force in the rib. Practically, the effective width of the slab is smaller than the whole width of the slab. Only exceptionally are the ribs arranged in such a way that there are no gaps in between the effective widths and all internal forces in the slab can be summed up into the rib. This happens if the distance between the ribs is smaller or equal to the effective width of the slab calculated from the national code.

Behaviour of a rib in a wide slab

Now we can investigate a system where the width of the slab is greater than the effective width of the slab. The equilibrium condition must be fulfilled. If we integrate all the axial forces in the whole slab and the beam, we - of course - get a zero result.

Distribution of the axial force in the slab. This is independent on the defined effective width of the slab. Only the stiffness of the slab and beam is responsible for the shape of the distribution of internal forces.

This is a section across the middle of the slab showing the distribution of the axial force.

We can integrate the axial force in the section across the whole width of the slab. We get 439kN.

Compared to the axial force in the beam, which is 435kN. We see the whole system is in equilibrium. The small difference results from the size of the finite elements.

Comparison of different effective widths

However, if we extend the effective width of the slab to the whole width of the slab, we neglect the distribution of the internal forces over the slab and the concentration over the beam. (In fact, there are two limit values: the minimum effective width is equal to the width of the beam and the maximum one is equal to the whole width of the slab.)

The internal forces in the slab are excluded from the slab and integrated into a new virtual T section. This virtual section consists of the effective slab width and the beam.

Distribution of the axial force in the slab. We can see that the distribution is equal to the one in the pictures above where the effective width of the slab was defined according to the code.

In the picture we can see the axial force after the forces within the effective width of the slab were excluded from the slab. In SCIA Engineer you can achieve this using the checkbox "RIB" in the results.

These axial forces within the effective width of the slab can be integrated.

We get axial force equal to 56kN, which is in the slab. The total axial force in the slab was 435kN. Therefore, in the part outside the effective width we have axial force 435 - 56 = 379kN.

In the beam, we still have the same 445kN. (The difference to the previous pictures results from the changed size of the 2D finite elements).

If we create the sum of the integrated axial force in the slab and in the beam, we must get 445 - 57 = 388kN.

Look what happens if we increase the effective width of the slab to 1500mm. This results from the following formula: $2 * (0,1 * L) + b_w = 2*0,6+0,3$

As we can see, the axial force in the slab is still the same. It must be, because the effective width of the slab has no influence on the distribution of the axial force in the finite element calculation. It only affects the split of the forces after the calculation between the slab and the virtual T section.

The area of the effective width of the slab will be removed from the slab and the forces will be integrated into the T section. The internal forces outside of the slab will remain in the slab.

These internal forces will be moved to the T section.

If we integrate the axial forces, we get 234kN.

In the rectangular section below the slab we get the original 445kN.

If we reduce this axial force of the beam by 234kN, which is the sum of the axial forces from the effective width of the slab, we get 211kN

The axial force outside the effective width remains in the slab.

If we integrate the forces (left and right) outside the effective width, we get axial force equal to 210kN, which is in equilibrium with the tension in the rib as a T Section.

3.3.2. Stiffness of ribs in CDD calculation

The calculation of the stiffness of the rib depends on the checkbox "Rib".

Check box is OFF

The stiffness of the beam and the plate will be calculated separately. If there is 1D reinforcement in part of the slab it is not taken into account for the calculation of the stiffness of the plate.

Check box is ON

- 1) Equilibrium for the final cross-section is calculated for each dangerous combination and each type of stiffness.
- 2) The stiffness of the rib, only taking into account the rib cross-section, is calculated with the height of compression zone from equilibrium on the whole (final) section. Stiffnesses are calculated to the centre of gravity of the transformed final cross-section.

- 3) Stiffness of the 2D element outside of the effective width is calculated by the standard procedure. Stiffness of the 2D element inside effective width is calculated in two directions: direction of the rib (α_{rib}) and direction perpendicular to the rib. (α_{rib} + 90)
- 4) The stiffness perpendicular to the rib is calculated by the standard procedure.
- 5) The stiffness in the direction of the rib is calculated according to following procedure:
 - The 1D reinforcement which is designed or inputted in part of the slab of the final cross-section is taken into account for the calculation of the stiffness of the 2D element. This reinforcement is transformed to 2D reinforcement and is added to the standard 2D reinforcement.
 - Uncracked stiffnesses (EA_I, Ely_{,I}, Elz_{,I}) will be calculated for the whole thickness of the 2D element with standard 2D reinforcement (required/provided/user) and with transformed reinforcement from the 1D member. The stiffness is calculated to the transformed centre of gravity of the uncracked section.
 - Cracked stiffness is calculated in case that (σ_{ct} <= σ_{cr}). The stiffness (EA_{II}, Ely,_{II}, Elz,_{II}) will be calculated taking into account parameters from the calculation of the 1D element which is nearest to centre of gravity of the 2D element. The height of compression zone is calculated according to formula:

$$\mathbf{x}_{s} = \frac{\mathbf{A}_{cc} - \mathbf{A}_{cc,Rib}}{\mathbf{b}_{eff}}$$

Where :

 A_{cc} – compressive area of whole cross-section for cracked CSS $A_{cc,RIB}$ – compressive area of part of cross-section (rib cross-section) for cracked CSS b_{eff} – effective width of the slab for check act - is maximum tensile strength calculated for final cross-section (rib cross-section

 σct - is maximum tensile strength calculated for final cross-section (rib cross-section + part of the slab) and for characteristic combination

The stiffness is calculated to the transformed centre of gravity of the cracked section.

• The average stiffness will be calculated from the cracked and the uncracked stiffness using the distribution coefficient, which is calculated from the stresses calculated for the whole cross-section of the 1D element which is nearest to centre of gravity of the 2D element.

bending stiffness around y-axis (Ely) = $1/[\zeta/(Ely)_{II} + (1-\zeta)/(Ely)_{I}]$ bending stiffness around z-axis (Elz) = $1/[\zeta/(Elz)_{II} + (1-\zeta)/(Elz)_{I}]$ axial stiffness (EA) = $1/[(\zeta/(EA)_{II} + (1-\zeta)/(EA)_{I}]$

3.4. **Orthotropy**

In engineering practice, you may often come across a situation when the slab (or wall) to be designed has different characteristics (stiffness) in the longitudinal and transverse direction and thus, shows different

behaviour in these two directions. Such a behaviour may result from the geometry (e.g. ribbed slabs) or from physical assumptions for a particular situation, for example, when determining deformations in a cracked plate or when excluding vertical members from a horizontal stiffening system (e.g. masonry walls).

Whenever you need to adjust the finite element model accordingly to reflect such a behaviour in SCIA Engineer, the orthotropic properties can be used. These orthotropic properties can be defined in two ways.

	2D MEI	MBER (1)
₽.	f 🗃 🏶	
	Name	D1
	Layer	Calque1 V
	Element type	Standard \lor
	Element behaviour	Standard FEM 🗸
	Туре	plate (90) 🗸
	Shape	Flat
	Material	C25/30 ∨ 📑
	FEM model	Isotropic 🗸
	FEM nonlinear model	Isotropic Orthotropic
	Thickness type	constant 🗸
	Thickness [mm]	200.00
	Member system-plane at	Centre 🗸

Orthotropy in the properties of a 2D member

Property modifier

INPUT PANEL	Ó	All	work	statio	ns 🗸		
Boundary conditions 🗸	<	P All	tags	\sim			
	4	S	Þ		Ħ	₼	+
# 🚣 🚝 🚝 🚥 🛶 (00						

The difference is in the data you need to enter. In the orthotropy, the stiffnesses are defined directly, while in the property modifier, a factor is specified by which the isotropic stiffnesses are multiplied.

The property modifier is a bit more flexible because it does not depend directly on the properties of the modified part. If you want to enter an uniaxially stretched plate, then you can do that for a 20cm thick plate and also for a 30cm thick plate using the same values. The orthotropic properties require that you define separate properties for each of the plates (20cm and 30cm one).

On the other hand, also the orthotropy has its advantages. It can be parameterized, and the program includes a set of generators to help you with the input.

However, it is important to understand individual orthotropic parameters. The stiffnesses are defined with parameters starting with a "D" or "d". The property modifiers ask for the following parameters for a shell element:

Stiffness factors 2D	×
📑 📲 🗹 📴 📾 🐟 🗢 🔲 🖨 🖓 🛛 AU	• T
SF2D1 Name	SF2D1
Description	
Туре	Standard 🗸
Correction factor for D11	1.000
Correction factor for D12	1.000
Correction factor for D22	1.000
Correction factor for D33	1.000
Correction factor for D44	1.000
Correction factor for D55	1.000
Correction factor for d11	1.000
Correction factor for d12	1.000
Correction factor for d22	1.000
Correction factor for d33	1.000
New Insert Edit Delete	ОК

The parameters beginning with "D" represent plate stiffnesses. The parameters starting with "d" are membrane stiffnesses.

The direction is derived from the direction of the local coordinate system.

- D11: Flexural stiffness in the "x" direction (bending)
- D22: Flexural stiffness in the "y" direction
- D12: Mixed stiffness of D11 and D22 (transverse contraction)
- D33: Torsional stiffness
- D44: Shear flexural stiffness in the "x" direction
- D55: Shear flexural stiffness in the "y" direction
- d11: Normal membrane stiffness in the "x" direction (stretching)
- d22: Normal membrane stiffness in the "y" direction
- d12: Mixed stiffness of "d11" and "d22" (transversal contraction)
- d33: Shear membrane stiffness

$$\begin{bmatrix} M_{x} \\ M_{y} \\ M_{xy} \\ T_{x} \\ T_{y} \end{bmatrix} = \begin{bmatrix} D_{11} & D_{12} & 0 \\ D_{21} & D_{22} & 0 & 0 \\ 0 & 0 & D_{33} & & \\ 0 & 0 & D_{33} & & \\ 0 & 0 & D_{44} & 0 \\ 0 & 0 & D_{55} \end{bmatrix} \begin{bmatrix} w_{xx} \\ w_{yy} \\ 2w_{xy} \\ w_{x} + \varphi_{y} \\ w_{y} - \varphi \end{bmatrix}$$

In case of a simple, isotropic plate, the stiffness can be expressed using the following formulas:

Plate direction	Membrane stiffness
$D_{11} = D_{22} = \frac{E \cdot h^3}{12(1 - \nu^2)}$ $D_{12} = \nu \cdot \sqrt{D_{11} \cdot D_{22}}$ $D_{33} = G \cdot \frac{h^3}{12}$	$d_{11} = d_{22} = \frac{E \cdot h}{1 - \nu^2}$ $d_{12} = \nu \cdot \sqrt{d_{11} \cdot d_{22}}$
$G = \frac{E}{2 \cdot (1 + \nu)}$ $D_{44} = D_{55} = G \cdot h$	$d_{33} = \frac{1}{2} \cdot (1 - \nu) \cdot \sqrt{d_{11} \cdot d_{22}}$

✤ How to model a one-way slab in SCIA Engineer

A one-way slab is a slab that bears the load in one direction mainly. It can be a slab supported on two edges only or a slab supported on four edges for which the bigger span length L_y is at least twice the smaller span L_x . The design of a one-way slab will lead to reinforcement mainly in the bearing direction.

In a Finite Element software like SCIA Engineer, when the slab is supported on its four edges, the software will by default consider it as a two-way slab. Since there is no predefined main direction for the bearing of the

load, the bending stiffness of the slab will participate in both x and y directions. In SCIA Engineer the user can easily define a one-way-bearing slab.

Figure 1: Bending moments in a two-way slab (on the left) and one-way slab (on the right)

In SCIA Engineer, the input of a one-way slab can be done with orthotropy properties. Two types can be used and are explained below.

One-way slab using "two heights" orthotropy type

The example is made of a slab supported by beams and columns. In the slab properties, change the FEM model to "Orthotropy", edit the orthotropy property and select the type of orthotropy "two heights". The input data are the thickness of the plate for the calculation of the flexural stiffness in the x-direction, h_1 , and the y-direction, h_2 . For a slab bearing mainly in the x direction (smaller span length in the example), h_1 should be kept equal to the actual plate thickness (180 mm) and h_2 (thickness in y-direction) should be reduced.

Chapitre 3: Modification of results

2D MEM	BER (1)
▲ ≠ 물 🗳 🖫 🔳	
Name	D1
Layer	Calque1 🗸
Element type	Standard \checkmark
Element behaviour	Standard FEM 🗸
Туре	plate (90) 🗸
Shape	Flat
Material	C20/25 🗸
FEM model	Orthotropic \checkmark
FEM nonlinear model	none \vee
Orthotropy	0T1 V
Member system-plane at	
Eccentricity z [mm]	0.00
LCS type	Standard V
Swap orientation	()

Figure 2: Parameters for a one-way slab using "two heights" orthotropy type

There is no specific rule regarding the value of h_2 . With smaller values of h_2 , the results will be close to the following load distribution:

Figure 3: Bending moment in the supporting beams of a one-way slab (on the left) and of a one-way load panel (on the right)

The resulting moment mx in the slab is then close to a 1m-wide simply supported beam:

$$m_x = \frac{q * L_x^2}{8} = \frac{3 * 5^2}{8} = 9,4$$
kNm/ml

4 One-way slab using "one direction" orthotropy type

This type of orthotropy requires three input parameters and can also be used for modelling hollow core slabs: the equivalent beam cross-section CSS, the spacing L used for the calculation of the flexural bending stiffness in direction 1 (or x) and the concrete topping height h used for the calculation of the flexural bending stiffness in direction 2 (or y). To model a one-way slab, a small value of h can be used. However, keep in mind, that h is also used for the calculation of the self-weight of the slab.

For the equivalent cross-section, a slab-equivalent shape is used: "thickness of the slab" x "width of the beam", i.e. 180 x 1000mm. For the spacing parameter, as the slab is plain, the same value as for the width of the beam is used, i.e. 1000mm.

Figure 5: Parameters for a one-way slab using "one direction" orthotropy type

Figure 6: Bending moment in the supporting beams and in the one way slab using the type "one direction"

For small values of h₂ or h, both types give the same results for the bending moment in the bearing direction and the load transferred to the supported beams.

There are still some differences between both orthotropy types. First, using "one direction" type leads to higher values of bending moment on the secondary beams (parallel to the bearing direction). This is due to the torsional moment component of the plate (D33) that is different between both types. Secondly, with "one direction" orthotropy type, the self-weight of the slab is calculated based on the concrete topping thickness h only. The total height of the slab is thus not accounted for and the user has to add the missing part of the self-weight manually in a permanent load case.